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Chapter 1

MATLAB overview

1.1 An introduction to MATLAB

We will start by discussing how one accesses MATLAB, including any details particular to the University
of Maryland. This will be followed by a quick check of the interactive environments of MATLAB before
proceeding to introductory elements of the software. In the notes that follow, we denote MATLAB
examples in the following manner

MATLAB examples

1.1.1 Installing and starting MATLAB

If you have a personal copy of MATLAB, the installation instructions will come with the software. MAT-
LAB can also be run using the campus Virtual Computer Laboratory (VCL) located at eit.umd.edu/vcl/.
This link will take you to the home page of the VCL from which you can log into the VCL using your
university ID. Once done, click on the MATLAB icon; the MATLAB command line interface should
appear after the MATLAB splash screen (these may open under the already open VCL windows!).

It is important to understand that the MATLAB application is not actually running on your local computer,
and so the current directory (folder) that MATLAB will look into for your scripts and functions will not
be found on your computer. To select a folder on your computer (e.g., your desktop), click on the · · ·
bottom above the command window next to the ”Current Folder” window and select the Desktop folder
from Client – not the Local disk – both of which are located in the Computer folder.

Among the commands MATLAB accepts are some Unix-like commands; therefore, we can change to our
computer’s desktop directory directly from the command line by

>> cd V:\Desktop % for Mac OS X

and so now MATLAB will first look to our desktop for .m script and function files and will deposit any
plots or saved data files to the same. To make sure everything works, try the following commands

8

http://eit.umd.edu/vcl/
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>> A = 2

>> b = 3;

>> A + b

>> plot([1,2,3,4],[10,-1,9,2],’-o’)

>> print -djpeg matlabFig.jpg

>> quit

Much more will be said later regarding MATLAB and your computer’s file system.

1.1.2 About MATLAB

MATLAB is a environment for scientific computing that is ideal for computations that require extensive
use of arrays and graphical analysis of data. Features of MATLAB include the following:

1. MATLAB is a software package that operates as a problem-solving environment; it has a graphical
user interface, in which the most prominent feature is a window that interprets user commands.

2. Typical MATLAB commands consist of those that manipulate data structures, and extensive set
of mathematical functions, and numerous plotting and data visualization tools.

3. MATLAB commands can be assembled into a script that acts as an interpreted (not compiled)
computer program; these scripts are saved as plain text files with a .m extension.

4. MATLAB is particularly good at handing arrays - in fact, the default data type is a double-precision
array; array indices begin with 1 (compare to 0 in C, Java, and Python).

5. New functions in MATLAB can be defined to operate exactly as the built-in functions; all function
parameters are passed by value to functions (no pointers).

6. MATLAB supports object-oriented programming approaches - classes are defined in terms of sub-
directories with names beginning with the @ symbol; these directories typically contain the class
constructor, display, accessor, and all other class methods.

1.1.3 What are typical MATLAB applications?

1. Solution and analysis of systems of linear equations;

2. Solving ordinary differential equations with numerical integration techniques and plotting the re-
sults;

3. Solving large sets of nonlinear equations, such as those resulting from a chemical process mathe-
matical model;

4. Statistical analysis and graphical interpretation of experimental data;

5. Image processing;

6. Process control system synthesis and tuning;

7. Prototyping computer programs that will then be converted to a compiled language to improve its
efficiency;
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8. Much, much more.

In terms of comparing MATLAB to other computing languages,

• MATLAB is an interpreted language (no compiler); scripts can be saved as .m files;

• Array indices begin with 1 (compare to 0 in C or Java);

• Arrays are passed by value to functions (no pointers);

• Array elements are accessed with the format A(1,2) (compare to the format A[0][1] in C or Java);

• Powerful matrix mathematical functions are built-in (e.g., for Gaussian elimination or least-squares
solution methods for linear systems);

• Numerous options for plotting and visualizing data are available in MATLAB.

1.1.4 Getting started

After starting MATLAB, the following prompt will appear in the command window:

>>

At this point, MATLAB is ready to begin a computational session. Hitting the return key generates a
MATLAB prompt on a new line; valid MATLAB instructions have the following characteristics:

• MATLAB is case sensitive, so the command plot is different from Plot;

• MATLAB keywords cannot contain spaces; however, MATLAB ignores the number of spaces be-
tween keywords and mathematical operations;

• Comments are entered after the % symbol;

• ... is used to continue a line after a line break;

• multiple commands can be entered on a single line by separating each command with a comma or
semicolon.

1.1.5 Variables

The first important concept in understanding how MATLAB and programming languages work is to
recognize that data are represented by variables and data are transformed by functions and programs.
A variable has two important characteristics:

1. A name (e.g., a)

2. A value (e.g., 2)
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In a MATLAB session, a new variable is defined using the assignment operator = (we intentionally not
call this symbol the “equal sign”).

>> a = 2

a =

2

Note how the name and value are echoed in this MATLAB session. Other important characteristics of
variables include

• Recall that MATLAB is case sensitive, so the variable name ”bob” is different from ”Bob”

• Generally, try to avoid variable names that are the same as MATLAB functions (e.g., sin = 2);
using keywords (e.g., end) is not allowed by MATLAB.

• The value can be much more than a single number - the differences are defined by the data types
discussed in the following section.

1.1.6 Data types

The default data type in MATLAB is a double-precision array. While this data type tends to be used
most often in computations, several other data types also are important:

>> a = 2 % define a scalar double

a =

2

>> b = [ 2, 3] % a 1 by 2 array

b =

2 3

>> s = ’a character string’

s =

a character string

>> s(3) % s is actually an array of single characters

ans =

c

as well as MATLAB cell arrays and structures for storing a set of values, possible of mixed data type,
under a single variable name such as cell arrays

>> c = {’elements’, ’in a cell array’, 2}

c =

’elements’ ’in a cell array’ [2]

and structures

>> t.a = 1

t =

a: 1

>> t.b = ’a structure’

t =

a: 1

b: ’a structure’
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To check the class (the datatype) of some currently defined variable,

>> class(t) % returns the data type

ans =

struct

1.1.7 The workspace

In addition to its powerful library of mathematical and visualization functions, MATLAB also serves as a
numerical problem solving environment. An important concept is that of the workspace, a virtual storage
area that contains the current variable names and values. The command shell for each problem-solving
session has its own workspace; the contents of a workspace can be saved using the save command and
then retrieved with the load command.

During a MATLAB session, all variable names and values are stored in the session workspace. The
current workspace variables can be listed using the who command; they can be cleared using the clear

varname for the individual variables named varname; the entire workspace can be cleared using the clear
command by itself. We will see that this notion of workspace will be extended by functions, because
each function has its own workspace.

To investigate the workspace concept, try the following sequence of MATLAB commands in which two
variables are defined and the who command is used to display the variables currently defined in the
workspace.

>> a = 1;

>> b = 2;

>> a % echo A

>> who % show defined variables

Your variables are:

a ans b

>> clear % clears all the variable definitions from the current workspace

Question: What will be displayed after this script is run if we use the who command again?

1.1.8 Help

MATLAB is an environment and programming language that contains numerous built-in functions and
features and is a computational system that continues to evolve. Fortunately, all MATLAB documentation
is available on-line; the starting point for any help is the keyword help.

1.2 Working with arrays

1.2.1 Arrays

Array and matrix are interchangeable terms that describe a set of numbers arranged in a grid-like fashion.
A vector also is an array, however, vectors generally refer to one-dimensional arrays. In this book, the
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default arrangement of a vector is a column, which differs from the row arrangement of MATLAB’s
default form for a one-dimensional array.

Arrays are defined and accessed based on the following concepts:

1. Array indices are nonzero positive integers beginning with 1;

2. Column elements are separated by a comma (,) and row elements are separated by a semicolon (;)
when arrays are defined;

3. Blank spaces are equivalent to commas when defining arrays;

4. Arrays must have a rectangular shape;

5. When defined, array elements normally are contained between the [ and ] symbols (we will see that
this is not always the case, especially when using the : operator, below).

6. The element in row i and column j of matrix A is accessed by A(i,j)

Now consider some basic MATLAB operations that define or access elements in array form. We begin
with two, one-dimensional arrays each containing three elements:

>> a = [1, 2, 3] % row array

a =

1 2 3

>> b = [1; 2; 3] % column array (vector)

b =

1

2

3

>> a(1,2) % access element in 1st row, 2nd column

ans =

2

Now we define two different two-dimensional arrays taking note of how the comma , and semicolon
; are used to separate column and row elements, respectively. We demonstrate how the size of a
two-dimensional array is defined by its number of rows and columns.

>> A = [1, 2; 3, 4] % define a 2x2 array

A =

1 2

3 4

>> A(2,2) = -10 % reset the value of element (2,2)

A =

1 2

3 -10
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>> a = [1, 2, 3; ... % line continuation

4, 5, 6]

a =

1 2 3

4 5 6

>> size(a) % will return a row vector [no. rows, no. columns]

ans =

2 3

Question: What is the size of c = [1, 2, -2]?

1.2.2 The : operator

We can create arrays and access blocks of elements efficiently using the colon : operator. The : operator
creates a sequence of numbers according to the following forms

initial value : increment : final value general format
initial value : final value default increment value is 1

and so sets of elements of an array can be accessed with the form A( expression) where the expression
defining the matrix indices takes the following forms:

( initial value : increment : final value ) increment must be an integer
( initial value : final value ) default increment value is 1
( : ) all elements in a specified array dimension

Note that the initial index of any dimension is 1 and the last index can be accessed with the end keyword.

The : operator is used to define new arrays in an efficient manner:

>> a = 1:0.5:4

a =

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

>> b = 1:7

b =

1 2 3 4 5 6 7

>> C = [1:5 ; 3, 4, 1, 0, 4] % creates a 2 by 5 array

C =

1 2 3 4 5

3 4 1 0 4

and to access blocks of elements in an existing array:
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>> C(:,2) % return the second column of array C

ans =

2

4

>> C(2,:) % return the second row of C

ans =

3 4 1 0 4

>> C(:,1:2:end) % return odd columns of C

ans =

1 3 5

3 1 4

>> C(1,3:5) % return row 1, columns 3 thru 5 of C

ans =

3 4 5

1.2.3 Matrix transpose

The matrix transpose operation switches the order of the array indices, effectively flipping the array over
its diagonal:

B = AT such that Bj ,i = Ai ,j

The MATLAB operator used to carry out the transpose operation is the single quote (’). Consider the
one-dimensional array operations:

>> a = [1:4]

a =

1 2 3 4

>> b = a’ % transpose operation changes a from a row to column array

b =

1

2

3

4

and the two-dimensional examples of the transpose operator in action:

>> C = [1 2 3; 4 5 6]

C =

1 2 3

4 5 6

>> C’

ans =

1 4

2 5

3 6
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1.2.4 Array sums, differences, products

The arithmetic operations +, −, and ∗ can be used on arrays for addition, difference, and product
operations; typically, we do not use the matrix division / operation (do not confuse this with the important
operator to be discussed later; the ./ operator also is frequently used).

1. A*B is the matrix product of A and B; in this case, A is a (I x J) array while B is (J x K) and the
product is (I x K);

2. A.*B is the element-by-element product operation; the size of arrays A and B must be identical;

3. There is no .+ or .- operation because these operations are by default element-by-element; each
array must be identical in size;

4. Element-by-element operations such as division (./) and exponentiation are frequently used; most
functions (e.g., sin(), exp(), log(), etc) operate as element-by-element operations.

Now consider some basic MATLAB array operations:

>> A = [1 2; 3 4]

A =

1 2

3 4

>> b = [2; 3]

b =

2

3

>> A*b % matrix multiplication

ans =

8

18

>> b*A % should generate an error message

??? Error using ==> *

Inner matrix dimensions must agree.

and now we consider examples of element-by-element operations

>> C = [ 3 4; -1 -2]

C =

3 4

-1 -2

>> A+C

ans =

4 6

2 2

>> A.*C

ans =

3 8

-3 -8
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Element-by-element operations are particularly useful for emulating products and quotients of true math-
ematical functions; for example, if 0 ≤ x ≤ 100 and we wish to plot y = x sin(πx), we first represent x
by a finely discretized array of values and then compute the products of x and sin(πx):

>> x = [1:0.1:100]; % note how ; suppresses echo

>> y = x.*sin(pi*x); % element-by-element product is used for x sin(pi x)

>> plot(x,y)

1.2.5 Other mathematical functions

In addition to the +, −, ∗, and / functions discussed previously, MATLAB also has built in many of the
familiar mathematical functions. Those that operate on scalar variables or matrices on an element-by-
element basis include

function MATLAB equivalent

sin(x) sin(x)

cos(x) cos(x)

tan−1(y/x) atan2(y,x)

ln(x) log(x)

log10(x) log10(x)

ex exp(x)√
x sqrt(x)

Exponentiation can be a bit more tricky; if we want to compute the element-by-element square of matrix
A we use

>> A.^2

whereas the matrix product AA can be computed using

>> A^2

or

>> A*A

For vectors and matrices, MATLAB also features a number of useful functions; for example, for the
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two-dimensional array AI×J

mathematical operation MATLAB equivalent

I∑
i=1

Ai ,j sum(A) or sum(A,1)

J∑
j=1

Ai ,j sum(A,2)

1

I

I∑
i=1

Ai ,j mean(A) or mean(A,1)

1

J

J∑
j=1

Ai ,j mean(A,2)

and other matrix functions that operate similarly, such as prod(A), max(A), and min(A).

1.3 Plotting

MATLAB has an extensive set of tools for plotting and data visualization. Consider, for example, the
problem of plotting up sin(t) and cos(t) for 0 ≤ t ≤ 4π. First, we define an array t of values over the
defined domain and compute both function values; the sin function is plotted as a solid blue curve

>> t = [0:0.2:4*pi];

>> y = sin(t);

>> z = cos(t);

>> plot(t,y)

The plots are displayed in Fig. 1.1. A plot can contain multiple curves, and the curves are distinguished
by different colors or line types
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Figure 1.1: Elementary sample plots.

>> plot(t,y,t,z) % plots both curves on a single axis

>> plot(t,y,’--’,t,z,t,z,’-o’) % sin(t) dashed curve, cos curve -o

>> xlabel(’t’) % add a label to the "x" axis

>> title(’My first plot’) % adds a title to the plot
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We can further modify plots using the following commands

>> grid % adds a grid

>> legend(’sin(t)’,’cos(t)’) % adds a legend

>> plot(t,y,’LineWidth’,2) % increases the curve linewidth from 1 to 2 pts

>> axis([0 1 -1 2]) % sets x axis limits to 0 and 1, y to -1 and 2

1.3.1 Multiple plot figures

We can produce and view more than one plot at a time using the figure function.

>> figure(1) % brings figure 1 to the foreground

>> clf % clears current figure

1.3.2 Multiple plots per figure

Multiple plots can be placed on a in a single figure using the subplot function

subplot( M,N,P )

where M is the number of rows, N is the number of columns in the overall plot, and P is the plot number,
where counting is done on a row-by row basis.

1.4 Scripts, functions, and files

Before we begin our discussion of programming in MATLAB, we examine the way MATLAB programs are
stored and invoked using scripts and functions, and how MATLAB finds these files within you account’s
directory structure.

1.4.1 MATLAB and the file system

It is important to understand the relationship between the MATLAB operating environment and your
computer’s file system structure because

• MATLAB looks in the workspace for current variables and the file system for scripts and functions;

• The command shell looks first in the current directory for .m files, and then follows the path
definitions;

• Understanding directory structures will help organize your scripts and functions into useful libraries;

• Object-oriented programming in MATLAB is implemented by defining object classes through user-
created directories;

• Directory structures can be navigated through unix-like commands.
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Try the following commands on your computer:

>> pwd % present working directory

>> ls % list directory contents

>> what % list only MATLAB related files (.m, .mat, etc)

>> mkdir newdir % make a new directory (folder) named newdir

>> cd newdir % change directories to newdir

>> diary on % collect session output in text file "diary"

>> diary off % turn off diary

We also can open a MATLAB script or function file in the M-file editor using open filename, where it
is not necessary to include the .m extension in the file name.

1.4.2 Addpath

When MATLAB encounters a function name inside a statement, script, or function, it looks first in the
present working directory for a .m file by that name, and then it follows the paths defined for that session.
To add a new path, such as the directory MyFuns:

>> addpath MyFuns

1.4.3 Saving plots for webpages, documents, and more

Plots can be saved in a number of formats; for example, to save plots in jpeg format (suitable for
Powerpoint, Word, and web-page documents)

>> print -djpeg myplot.jpg

1.4.4 Reading/writing data to the command window

Recall from the brief discussion of character strings, that a character string is (typically) a 1-row array of
single characters (try the transpose operator on a string to see for yourself). Furthermore, scalar doubles
can be converted to strings using the num2str function, and data can be read into the current workspace
using the input function. To see some of these concepts in action, consider the following MATLAB
session where two character strings are concatenated; note how the disp function removes the ans =

output:

>> A=’abc’; B=’def’;

>> C = [A,B] % concatenation at work

C =

abcdef

>> disp(C)

abcdef
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We then concatenate character strings and numerical values by converting the latter to character strings
with the num2str function:

>> F=3.2;

>> C=[A,num2str(F)]

C =

abc3.2

>> disp([’value of F: ’,num2str(F)])

value of F: 3.2

We can use these facts to build up strings that are useful for writing out data in a more easily read
format, or for figure titles and similar applications. For example, try writing to the command window
using the disp command:

>> x = input(’Enter the value of x: ’);

Enter the value of x: 1.234

>> x

x =

1.234

>> disp([’value of x = ’,num2str(x)])

value of x = 1.234

The input function can also be used to read in character strings from the command window; one can
use the input function as-is, provided the user enter the character string in single quotes. To avoid the
need for quotes, a second input parameter ’s’ can be added to specify the input as a character string,
entered without quotes:

>> x = input(’Enter you name: ’,’s’)

Enter you name: Ray

x =

Ray

>>

1.4.5 Script files

An effective way to write programs in MATLAB that will be frequently re-used is to create a script

file. A MATLAB script is a plain text file containing a sequence of MATLAB operations; when run, the
commands in the script are interpreted sequentially from the top down. A key concept in script operation
is that the script operates within the workspace from which it is invoked, and so scripts can use or modify
variables already defined in that workspace, or the script can define new variables that will remain in that
workspace after the script is run.

To demonstrate creating and running a script, using a text editor (such as the built-in MATLAB editor),
create a file called cpscript.m with the following text:
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% Cp is in J/mol/K and T is in K. The equation is valid only in the range

% 273 K < T < 373 K. Table C.3 p685, Smith, Van Ness, and Abbott, 7th ed.

Cp = 8.712 + 1.25e-3*T - 0.18e-6*T.^2;

T = 300

Cp = 8.712 + 1.25e-3*T - 0.18e-6*T^2

which computes the heat capacity of water Cp as a polynomial function of temperature T , where

Cp = 8.712 + 1.25× 10−3T − 0.18× 10−6T 2

and the coefficients are determined experimentally. In this small program, we fix the temperature to
T = 300K . Try running the script by typing the filename on the command line:

>> cpscript

T =

300

Cp =

9.0708

Note that it is good practice to give scripts meaningful names and that the names should never contain
blank spaces. Furthermore, script file names must always have the .m extension (suffix). We observe
that the comments at the top of the script automatically become the information displayed when the
help command is called:

>> help cpscript

% Cp is in J/mol/K and T is in K. The equation is valid only in the range

% 273 K < T < 373 K. Table C.3 p685, Smith, Van Ness, and Abbott, 7th ed.

As a practical application of this heat capacity equation

1. Plot the values of Cp over the valid range and mark the points at 300 and 373 K.

2. The amount of energy required to raise the temperature of water over the range [T0, T1] is given
by

Q = ∆H =

∫ T1

T0

Cp(T ) dT

on a molar basis. Integrate the Cp equation by hand and add this calculation to our script to find
Q given T0 = 300 K, T1 = 373 K.

3. Estimate the minimum time required to heat a cup of water to its boiling point from T0 = 300 K
using a solar furnace. To simplify your calculations,

1 cup water = 237 cm3 1 g

cm3

1 mol

18 g
= 13.17 mol

1.4.6 Functions

Functions are similar to scripts in that they are plain text files containing a sequence of MATLAB oper-
ations and are a useful means of writing MATLAB programs that will be frequently re-used. The crucial
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difference, however, between functions and scripts is that functions define their own workspace. This
distinction is important because it allows functions to “hide” the details of their internal computations
from the script, function, or MATLAB session from which the function is called.

MATLAB identifies functions from the first line of the function file, which must take the form

function [returned values] = funname(input parameter list)

consisting of the keyword function, followed by a list of variable that are to be returned from the
function, followed by the function name itself funname, and the input parameter list - a list of variables
that are sent to the function when it is called. MATLAB is quite flexible in calling functions in that not
all input and returned parameters must be specified when the function is called. Generally, the function
filename should be the same as the function name funname.

As an example of creating and using a function, if we would like to place the script we just wrote into
a library and to increase its utility by allowing the script to take in any value of temperature T and
return the corresponding heat capacity value Cp, we rewrite the function in the following form (named
cpair.m):

function Cp = CpWater( T )

% Cp is in J/mol/K and T is in K. The equation is valid only in the range

% 273 K < T < 373 K. Table C.3 p685, Smith, Van Ness, and Abbott, 7th ed.

%

% Called as C = CpWater(T)

Cp = 8.712 + 1.25e-3*T - 0.18e-6*T.^2;

return

Note that the T 2 term in this function allows for input temperature values in the form of vectors and
arrays. Now, we define a temperature value Ts and call the function with the following commands:

>> Ts = 350;

>> D = CpWater(Ts)

D =

9.1274

It is important to observe that the variable names used to call the function can be different from those
used internally by the function. The way this works is that

1. variable Ts is defined in the workspace of the current MATLAB session;

2. a copy of Ts is passed to function cpair.m when the function is called and is copied to variable T

inside the function;

3. the computations proceed inside the function, computing the value Cp, a copy of which is returned
from the function by copying its value to variable D in the workspace from which the function was
called.

Therefore, because of the way copies of variables are passes between the workspaces, the values of T and
Cp remain inside the function, and so they disappear after the function is called. This behavior of functions
is crucial to the operation of most computer programs, which would otherwise behave unpredictably if
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the internal workings of a function disrupted variables in the workspace from which the function was
called.

We see that our function can now be used to conveniently plot the heat capacity function by passing a
temperature array to the function:

>> Tv = (-10:10:110) + 273;

>> Dv = CpWater(Tv);

>> plot(Tv,Dv,’-o’)

>> grid on, xlabel(’T (K)’), ylabel(’Cp (J/mol/K)’)

Results can be seen in Fig. 1.2.
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Figure 1.2: Heat capacity of water as a function of temperature.

Finally we note that the return statement included in the function is not actually needed in this case;
however, when a return is reached inside a function, execution of the function stops immediately and
control is returned to the statement, script, or function calling the function; this is useful for cases when
we want to return from the function from a specific point within the function.

1.4.7 Varying the number of input/output parameters

As was stated in the previous section, not all input and output arguments of a MATLAB function must
be specified when the function is called. For example, consider a function that begins with the statement

function [A,B,C] = myfun(X,Y,Z)

% remainder of function goes here

where A, B, and C are computed inside the function and returned. If we are only interested in the first
output variable value, we can call the function using the following statement:

a = myfun(x,y,z)

Because of this flexibility in calling functions, we see there is value in ordering the output parameter
list so that the most frequently needed output parameters are listed first. Inside the function, we can
determine the number of output arguments used to call the function with the nargout keyword.



CHAPTER 1. MATLAB OVERVIEW 25

Because not all input parameters must be specified when calling a function, we must build in this flexibility
when creating the function. Consider for example, if we would like to be able to call the function above
by specifying only X and Y, where the default value of Z=0 is used in cases when it is not specified. We
rewrite the initial portion of the function to define this default value:

function [A,B,C] = myfun(X,Y,Z)

if nargin <= 2

Z = 0;

end

% remainder of function goes here

Additionally,

function [A,B,C] = myfun(varargin)

allows a variable number of input arguments by having the input list be specified as the cell array
varargin.

1.4.8 Inline and anonymous functions

Before closing this section on functions, let us describe two convenient approaches to defining relatively
simple functions. An inline function is created using a character string expr corresponding to the function
definition. The function name is defined when the function is created and arguments arg1, arg2, ...

can be passed to the function. For example to create g(x) = A sin(x)

>> g=inline(’A*sin(x)’,’x’,’A’)

g =

Inline function:

g(x,A) = A*sin(x)

>> g(pi/2,10)

ans =

10

We note that A and x must be explicitly passed to the function. An alternative that offers more flexibility
is the anonymous function. Anonymous functions

1. are simple to pass to other functions, e.g., plotting, minimization, and numerical integration rou-
tines;

2. are created using the @ symbol and are constructed without the single quotation marks used for
inline functions;

3. can include variables currently defined in the workspace (c.f. inline functions); note that subsequent
modifications to the variables do not affect anonymous functions already defined–parameters of the
function are “frozen” at the time of their creation;

4. and are recommended for use over inline functions.

To see anonymous functions in action, try the following script
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A = 10; % define A in workspace

g = @(x) A*sin(x) % note space location

ezplot(g)

1.5 Logical operations

1.5.1 Relational operators

Logical variables take on one of two values:

0 : false

1 : true

These values are produced by logical statements created using the relational operators listed below:

< : less than

> : greater than

<= : less than or equal to

>= : greater than or equal to

== : equal to

∼= : not equal to

It is important to distinguish between the assignment (=) and equivalence operators; for example

>> A = 14 % assign the value of 14 to variable A

A =

14

>> L = A == -10 % check if A equals -10

L =

0

These relational operators can operate on scalars, arrays, and even character arrays (strings); for example,
for double arrays

>> A = [1 2; 3 4]; B = [1 2; -10 7];

>> A == B

ans =

1 1

0 0

and for character strings
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>> a = ’a’; b = ’b’;

>> a == b

ans =

0

>> a == ’a’

ans =

1

>> strcmp(a,’a’) % a better way to compare strings

ans =

1

1.5.2 Precedence

Equations in MATLAB follow the typical precedence of mathematical operations:

1. operations in parentheses () are evaluated first (this applies to functions)

2. exponentiation and matrix transpose are performed next

3. then unitary minus (-) and logical negation ∼

4. * and / are next

5. \ is next

6. + and - then are performed

7. then the : operator

8. the logical operators <, >, <=, >=, ==, ∼=

9. logical AND (&)

10. logical OR (|)

11. short-circuit AND (&&)

12. short-circuit OR (||)

13. assignment = is performed last.

When two operations with equal precedence are encountered, MATLAB evaluates them from left to right.

Using this hierarchy, it is easy to see that in the following statement taken from cpscript.m, the
exponents are evaluated first, followed by the product operations, then the addition operations, and
finally the assignment operation:

Cp = 28.09 + 0.1965e-2*T + 0.4799e-5*T^2 - 1.965e-9*T^3

The rules of precedence also are critical to understanding important MATLAB operations that may, at
first, seem to make no sense at all. Consider, for example, the following MATLAB statements:

n = 0

n = n + 1
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In this sequence of statements, n is first assigned the value of 0; in the second statement, according the
rules of precedence, the addition operation on the right-side of the assignment operator = is performed
first giving a numerical value of 1, which is then assigned to variable n, leaving it with the new value.
This type of statement is extremely useful for counting operations inside computer programs.

1.5.3 Branching structures

Logical decision structures are program elements in which a sequence of decisions are made, producing
some result dependent on the outcome of the decisions. The essential feature of such decision processes
are the if structure, an example of which is included below.

if logical expression is true
statements to be executed

end

and for multiple decisions

if logical expression
statements to be executed

elseif logical expression
statements to be executed

elseif logical expression
statements to be executed

end

When one or more of the logical expressions are true, the first encountered is executed; for example,
consider the script

a = -10;

if a < 0

disp(’RESULT: a<0’)

elseif a < -5

disp(’RESULT: a<-5’)

else

disp(’RESULT: a>=0’)

end

Note the use of whitespace indentation to improve the readability of the script and to give a clearer
picture of the logical structure of the statements. Running the script yields

RESULT: a<0

The potential ambiguity of the script above may be reduced using nested if statements
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a = -10;

if a < 0

disp(’RESULT: a<0’)

if a < -5

disp(’RESULT: a<-5’)

end

else

disp(’RESULT: a>=0’)

end

which results in

RESULT: a<0

RESULT: a<-5

1.5.4 Multiple conditions per if statement

It is possible to construct branching structures that include more than one condition per decision using
the AND (&) and OR (|) operators:

if logical expression 1 & logical expression 2
statements to be executed if both conditions are true

end

if logical expression 1 | logical expression 2
statements to be executed if either or both conditions are true

end

The && and || are logical AND and OR operators that feature short-circuiting behavior, preventing the
evaluation of subsequent logical operations when an expression evaluates to FALSE. A useful example of
a short-circuit expression is

if b ~= 0 && a/b >= 1

which prevents division by zero in a/b when b=0.

1.5.5 A closer look at working with arrays

We saw earlier that the statement A == B produced an array of logical variables the same size as A and
B provided the arrays A, B are the same size. The relational operators also work when A or B is a scalar,
returning an array the same size as the non-scalar. To summarize in a set of examples,

1 == [1, 2, 3] evaluates to [1, 0, 0]

[1, 2] == [1, 2, 3] results in an array size error

[1, 3, 2] == [1, 2, 3] evaluates to [1, 0, 0]

We observe the general result of these operations is an array; using such an operation in an if statement,
the expression is evaluated as TRUE if all the elements of the array produced by the relational operation
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are true. If we would like to know whether any element of [1,2,3] is equal to 1, and to generate a
scalar logical value describing the outcome of the evaluation, we use the MATLAB any function:

if any([1,2,3] == 1)

disp(’found a match’)

end

Functions such as any are useful for comparing sets of values; for additional set operations, we may
choose to use the MATLAB intersect and union functions.

1.5.6 Switch

One can use the switch statement as an alternative to the if structures discussed above. The general
format is

switch scalar or string expression
case case expression 1

statements to be executed
case case expression 2

statements to be executed
otherwise

statements to be executed
end

1.5.7 Find

A function that finds the indices of all nonzero elements; this function is especially useful when used in
conjunction with a logical operation; for example

>> x = [0:0.1:20];

>> y = sin(x);

>> I = find( y>0 ); % returns indices of all positive portions of the curve

>> plot(x,y,x(I),y(I),’o’) % plots the positive segments

Results are plotted in Fig. 1.3.

1.6 Looping constructs

Loops for iterative and other calculations are created in a number of ways. The simplest form of a looping
construct is:

for i = array of values
statements to be executed

end

As an example, try the following script
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Figure 1.3: Use of the find function to identify the positive segments of sin(x)

% My first loop

for i = 1:6

i

end

Now try running the script; note that the following is equivalent

% My first.1 loop

X = 1:6;

for i = X

i

end

We can use a loop to create a table containing the cumulative sum of all integers from 1 to 10; the
results are displayed in two columns using the MATLAB disp.m method.

% Table of cumulative sums

cumusum = 0;

for i = 1:10

cumusum = cumusum + i;

disp( [i,cumusum] )

end

Now try running the script; again, note the operation of the statement cumusum = cumusum + i and
how its function depends on the precedence of the + and = operators.

1.6.1 Nested loops

Loops-within-loops frequently are used in matrix mathematical operations. For example, we can access
and print the value of each element in an array with the following set of nested loops; we first set up a
2x3 array

>> A = [4 2 -3; 3 6 -10]

A =

4 2 -3

3 6 -10



CHAPTER 1. MATLAB OVERVIEW 32

and then extract the elements of the left-most 2x2 block of elements:

for row = 1:2

for column = 1:2

A(row,column)

end

end

producing the output

ans =

4

ans =

2

ans =

3

ans =

6

For nicer output, try replacing A(row,column) with

disp([’A(’,int2str(row),’,’,int2str(column),’) = ’,int2str(A(row,column))])

1.6.2 While loops

We now consider an alternate loop construct:

while logical expression
statements to be executed

end

As an example, try the following script

% My second loop

i = 0;

while i < 6

i = i+1

end

Note that an important difference between if and while loops is that a faulty choice of relational
operation in the latter can result in an infinite loop.

1.7 Elements of programming in MATLAB

Now that we understand the basics of mathematical operations, logical operations, if and loop structures,
and how to package MATLAB operations into scripts and functions, let us consider the problem of
transforming a mathematical procedure or algorithm into a MATLAB program.
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1.7.1 Combining decisions and mathematical operations

To illustrate the basic elements of programming, consider a case where we would like to modify the heat
capacity function so that it checks to make sure the temperature T is in the proper range. In everyday
language, an algorithm that would carry out this procedure might first check if the temperature is below
the minimum valid temperature, then check if it too high, and if both of those conditions are not violated,
compute the heat capacity using the empirical correlation. We carry out these operations in the following
function using the if structure; note how multiple commands can be placed on one line by placing a
comma between statements:

function Cp = CpWaterScalar(T)

% Cp is in J/mol/K and T is in K. The equation is valid only in the range

% 273 K < T < 373 K. Table C.3 p685, Smith, Van Ness, and Abbott, 7th ed.

%

% Called as C = CpWaterScalar(T) where T is a scalar

if T < 273

disp(’Temperature too low’)

Cp = NaN;

elseif T > 373

disp(’Temperature too high’)

Cp = NaN;

else

Cp = 8.712 + 1.25e-3*T - 0.18e-6*T^2;

end

We test the function with the following script:

for T = (-10:20:110) + 273

D = CpWaterScalar(T);

disp([’T: ’,num2str(T),’, Cp: ’,num2str(D)])

end

which produces

Temperature too low

T: 263, Cp: NaN

T: 283, Cp: 9.0513

T: 303, Cp: 9.0742

T: 323, Cp: 9.097

T: 343, Cp: 9.1196

T: 363, Cp: 9.142

Temperature too high

T: 383, Cp: NaN

A more effective function makes use of the MATLAB find (or the any) function:
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function Cp = CpWaterFinal(T)

% Cp is in J/mol/K and T is in K. The equation is valid only in the range

% 273 K < T < 373 K. Table C.3 p685, Smith, Van Ness, and Abbott, 7th ed.

%

% Called as C = CpWaterScalar(T) where T can be an array

Cp = 8.712 + 1.25e-3*T - 0.18e-6*T.^2;

I = find(T < 273); % temperature too low

J = find(T > 373); % too high

if length(I) > 0

disp(’Low temperatures found’)

Cp(I) = NaN;

end

if length(J) > 0

disp(’High temperatures found’)

Cp(J) = NaN;

end

Try this function with the input

T = (-10:20:110) + 273;

1.7.2 Linear interpolation

Given two data points (xd1, yd1) and (xd2, yd2), we can define a line

y =
yd2 − yd1

xd2 − xd1
(x − xd1) + yd1

We translate this to the MATLAB function below:

function y = linearinterp(xdata,ydata,x)

slope = (ydata(2)-ydata(1))/(xdata(2)-xdata(1));

y = slope*(x-xdata(1)) + ydata(1);

If we try this with

>> xd=[0 1]; yd=[2,3]; x=[-0.5:0.1:1.5];

>> y = linearinterp(xd,yd,x);

>> plot(xd,yd,’ro’,x,y,’.-’)

>> grid on; xlabel(’x’); ylabel(’y’)

we obtain the plot in Fig. 1.4, showing the two data points as red circles, and the interpolated points as
the blue dots connected by a blue line.

1.7.3 Search for a minimum value

In this algorithm, we make use of logical operations and loop structures to develop a function that scans
a column vector of data, searching for and returning the minimum value and corresponding index.
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Figure 1.4: Demonstration of linear interpolation.

function [minval, I] = mymin(X)

% Search a column vector for its minimum value

I = 1;

minval = X(I);

for i = 2:length(X)

if X(i) <= minval

minval = X(i);

I = i;

end

end

We test this with

>> X = [1,-5,3,10];

>> [minval, I] = mymin(X)

1.7.4 The quadratic equation solver

We make use of branching concepts in developing a script for solving the following quadratic equation

ax2 + bx + c = 0

Of course, the quadratic equation has two solutions:

x =
−b ±

√
b2 − 4ac

2a

We present the following script as a program that takes as inputs the values of the three coefficients,
checks the discriminant for the form of the roots (two real and distinct, two real identical, two complex
roots), and prints the resutls:



CHAPTER 1. MATLAB OVERVIEW 36

% Quadratic equation solver script

a = input(’Enter a: ’); b = input(’Enter b: ’); c = input(’Enter c: ’);

disp([’The equation: ’, ...

num2str(a),’x^2 + ’,num2str(b),’x + ’,num2str(c),’ = 0’])

discr = b^2 - 4*a*c;

if discr > 0

x(1) = (-b + sqrt(discr))/(2*a);

x(2) = (-b - sqrt(discr))/(2*a);

disp([’has two real distinct roots: ’, ...

num2str(x(1)),’ , ’,num2str(x(2))])

elseif discr == 0

x = -b/(2*a);

disp([’has two identical real roots: ’,num2str(x)])

else

xreal = -b/(2*a); ximag = sqrt(-discr)/(2*a);

disp([’has complex roots: ’,num2str(xreal),’ +/- i’,num2str(ximag)])

end

We test this script with two cases, the first which generates two real distinct roots and the second complex
roots:

>> quadscript

Enter a: 1

Enter b: 5

Enter c: 1

The equation: 1x^2 + 5x + 1 = 0

has two real distinct roots: -0.20871 , -4.7913

>> quadscript

Enter a: 5

Enter b: 1

Enter c: 1

The equation: 5x^2 + 1x + 1 = 0

has complex roots: -0.1 +/- i0.43589

1.7.5 Quadratic equation solver function

To increase the utility of the quadratic equation solver, we can rewrite it in the form of a function:
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function [xreal, ximag] = quadfun(a,b,c)

% Quadratic equation solver function

disp([’The equation: ’, ...

num2str(a),’x^2 + ’,num2str(b),’x + ’,num2str(c),’ = 0’])

ximag(1) = 0; ximag(2) = 0;

discr = b^2 - 4*a*c;

if discr > 0

xreal(1) = (-b + sqrt(discr))/(2*a);

xreal(2) = (-b - sqrt(discr))/(2*a);

disp([’has two real distinct roots: ’, ...

num2str(xreal(1)),’ , ’,num2str(xreal(2))])

elseif discr == 0

xreal(1) = -b/(2*a); xreal(2) = -xreal(1);

disp([’has two identical real roots: ’,num2str(xreal(1))])

else

xreal(1) = -b/(2*a); xreal(2) = xreal(1);

ximag(1) = sqrt(-discr)/(2*a); ximag(2) = -ximag(1);

disp([’has complex roots: ’, ...

num2str(xreal(1)),’ +/- i’,num2str(ximag(1))])

end

Test the function above with the following:

>> x = quadfun(1,5,1)

>> [x,y] = quadfun(5,1,1)

>> [x,y] = quadfun(1,5,1)

1.7.6 Size selection

We now make use of logical operations and loop structures to develop a function than sorts a column
vector into discrete size ranges (bins). We leave it as an exercise to modify this function so that it works
for cases where one or more data points coincides with the upper value of the variable binrange.

function [ninbin, binmin, binmax] = binsort(X, N, binrange)

% Sort a column vector of data points into N evenly spaced bins

binmin = ( 0:1/N:(N-1)/N )*(binrange(2)-binrange(1)) + binrange(1);

binmax = binmin + (1/N)*(binrange(2)-binrange(1));

ninbin = zeros(N,1);

for i = 1:length(X)

for n = 1:N

if X(i) >= binmin(n) & X(i) < binmax(n)

ninbin(n) = ninbin(n) + 1;

end

end

end
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The MATLAB function randn generates normally distributed random numbers with zero mean and
standard deviation of 1; in the example below, we generate 10,000 of these random numbers and sort
them into 10 bins between -3 and 3, then plot the results with the MATLAB bar chart function to reveal
the classic bell curve in Fig. 1.5

>> y = randn(10000,1);

>> [ninbin, binmin, binmax] = binsort(y, 10, [-3,3])

>> bar((binmax+binmin)/2,ninbin)

−4 −2 0 2 4
0

500

1000

1500

2000

2500

Figure 1.5: Demonstration of the bin sorting algorithm using a normally distributed random number
generator.

1.8 Review problems

1. Numerically demonstrate that MATLAB’s built-in log function corresponds to the natural loga-
rithm, first by computing log(2.7183) and then by using MATLAB’s help function. Record your
results using the diary function, saving the diary.m file to your computer’s desktop.

2. Briefly describe the differences between

(a) procedural and object-oriented programming

3. One day this week, look up the high and low temperatures recorded at 5 major cities in the
United States. Arrange these data in a MATLAB struct data type and compute the difference
between the high and low temperatures, the averages of temperatures and differences, and the
standard deviation of the same. Then, construct a plot which graphically illustrates as much of
this information as possible.

4. A point on a circular wheel traces a curve called the cycloid as the wheel rolls in a straight line.
The cycloid is defined by the parametric equation

x = r(t − sin t)

y = r(1− cos t)
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Plot the cycloid for r = 1.5 and 0 ≤ t ≤ 7π by defining a finely spaced vector of points t and using
the vector to compute and plot x and y.

5. Create the following arrays

A =


1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4

 B =

[
1 2 1 2
3 4 3 4

]

by first creating the array

C =

[
1 2
3 4

]
and then forming A and B from an array of C arrays in a tiling pattern.

6. Consider the arrays

a = [1 2]

b = [2; 3; 3]

c = [-1 2; -1 0]

d = [1 2 3; -2 0 1]

Calculate by hand the products (if any) of the following operations; compare your results to MAT-
LAB

a*b, b*a, d*b, c*a’

7. Generate each of the following sequences using the : operator

0, 1, 2, 3, 4, 5, 6

-1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5, 2.0

-10, -8, -6, -4, -2, 0

3, 5, 7, 9, 11, 13, 15, 17

8. Using the : operator, write a two-line MATLAB script to first extract the odd rows from a matrix
A; assigning that result to matrix B, then extract the even columns from B to form C; test your
example with A=round(10*rand(5)).

9. The two-column array february has days listed in the first column and the daily average temperature
(in oC) in the second. Using a for-loop, check each temperature and write out those dates
corresponding to below-zero temperatures. Test your algorithm with february = [1 -2; 2 3;

3 0; 5 -5; 6 10].

10. The factorial of n is defined as

n! = 1 · 2 · 3 · · · n for n > 0

= 1 for n = 0

for non-negative integers n (the Gamma function can be used for non-integer and negative values,
but we do not consider those cases in this problem). Using this explicit definition, write a MATLAB
function that returns the value of n! for input parameter n. Test the function for input values of
3, 0, 3.5, and -3.
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11. Create a MATLAB function that computes the molecular masses of molecules composed of hydro-
gen, nitrogen, oxygen, and carbon; the function should have as it input parameters the number
of each of these species and should return the molecular mass of the input molecule. Test your
function on water, propane, benzene, nitric acid, and dimethyl ether.

12. Heat capacity for many materials can be approximated by the polynomial curve fit

Cp(T ) = a + bT + cT 2 + dT 3

where T is given in oC and Cp in J/mol/K. Data for several chemical compounds are given below;
these curve fits are valid over the temperature range 0-1200o C

Substance a b c d
acetone 71.96 20.10× 10−2 −12.78× 10−5 34.76× 10−9

air 28.94 0.4147× 10−2 0.3191× 10−5 −1.965× 10−9

methane 34.31 5.496× 10−2 0.3661× 10−5 −11.00× 10−9

(a) Write a MATLAB function that takes in the values of these coefficients and a given temper-
ature To and computes the molar heat capacity.

(b) Then, after integrating the general formula for heat capacity by hand, modify the function
to compute the total amount of energy required to increase the temperature of one mole of
each substance by 500o C over the initial temperature To .

(c) Plot the values of Cp for all three chemical species on the sample plot over the temperature
range each correlation is valid. Use a legend and different line types on this plot to distinguish
between the species.

13. Create three functions called cpacetone.m, cpair.m, and cpmethane.m that take as input a single
value of temperature and return the value of Cp; demonstrate the use all three for T = 200oC
using a single MATLAB script.

Modify the functions above so that they take arrays as inputs; check each by plotting Cp for each
component for

t=[100:5:600].

14. A 1 mol/sec stoichiometric mixture of air and methane available at 20o C is to be fed to a furnace
at 500o C; using your functions for computing heat capacity of these species (developed in the
previous problem), compute the power required using a constant heat capacity evaluated at 250o

C.

15. What are the results of

I = 2 == 2 > 1

= 2 : 5 + 2

= 2 ∗ 2 : (5− 1)

= 3 > 2&1

= 3 < 2&&1/(3 < 2)

16. What is the result of
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J = [1, 3];

B = [2, 4; -6, 9];

y = B(J)

17. Look up the special matrices ones, zeros, eye and briefly describe the arrays they produce.

18. What are the elements of the following arrays:

A = 1:3

B = [A; -2:1:0]

C = [B; -A]

Which arrays can be multiplied?

19. A 4 m2 roof-top solar water heater theoretically can collect up to 4000 W of power under optimal
conditions. Using the heat capacity functions for water described in the text, compute the efficiency
of a system that is found to heat 5 mol/s of water from 25o C to 55o C.

20. A map of our geographical region denotes x > 0 as the number of miles east of the origin and
y > 0 north, with the map centered at Cumberland, MD. In this coordinate system, the depth d
of the Marcellus geological formation is approximated as

d(x , y) = 40x − 45y − 0.25xy + 9000 feet

Plot the depth of the formation for −120 ≤ x ≤ 20 and −20 ≤ y ≤ 140.

21. Modify the quadratic equation solving function so that

(a) the single root x = −c/b is computed and returned for the case a = 0 and b nonzero;

(b) reports no solution exists is a and b both are zero.

22. Modify the bin-sorting algorithm binsort.m discussed in the notes, to include the following features:

(a) take into account the potential of data points at the uppermost bin range limit;

(b) check if the binrange is valid;

(c) create a related function which first calls binsort.m and then plots the output as a step like
plot with ninbin as the ordinate, and the binmin and max values as the abscissa;

Test your algorithm and plotting routine for the following data sets

(a) 1000 random numbers generated with the MATLAB rand.m function with N = 10 and bin-
range = [0 1]

(b) same as above, but with binrange = [0 1.5]

(c) X = [0 1 2 3 2 3 2 1 4 8 6 5 3 4 5 6 3 9 2 1 4 5 6 2 3 4 5] with N = 3 and binrange = [0 9]

23. Create a function that sorts three inputs in ascending order using an algorithm the exhaustively
searches through all combinations of the three inputs for the correct ordering. Test your function
with random sets of 3 numbers, including some combinations where two of the inputs are identical.
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24. Using the function mymin.m, create a function that sorts a vector in ascending order, called as

[V, I] = mysort(X)

producing the sorted vector V and a vector I of the same size corresponding to the index of those
values in the original data. Test your algorithm with the X data of the previous problem. Hint:
create a vector containing the indices of the initial data and iteratively determine the current
minimum value in the data vector using mymin.m, removing both the identified value and the
corresponding index element during each iteration.

25. Look up the definition of the two sorting algorithms: bubble sort and insertion sort. Write individual
MATLAB functions that implement the two algorithms, The input to each function must be a row
or column vector, and the two returned variables are the sorted vector (in ascending order) and
the vector of indices for the sorted array indicating the original positions of the elements in the
sorted array with respect to the input array. Test your functions with row array a = [2 4 -1 -1

0 11 -3 2 8 7 6], printing the results of each iteration as the sorting algorithms proceed. Which
algorithm requires fewer iterations?

26. Consider the following vapor-liquid equilibrium data

T (oC ) 138 75 120 90 69
xh 0 0.79 0.11 0.40 1
yh 0 0.97 0.50 0.84 1

Create a function which takes as input a temperature between 69 and 138oC, performs a linear
interpolation to find the corresponding values of xh and yh, and plots the tie-line connecting the
two, along with all of the thermodynamic data (temperature on the ordinate, mole fractions on the
abscissa). Test your function for T = 60:10:140oC. Be sure to sort all thermodynamic data (using
one of the algorithms discussed above) before doing any other calculations.



Chapter 2

Object-oriented programming in
MATLAB

Up to now we have focued on procedural programming techniques: translating numerical algorithms into
source code in a very ”top-down” approach. Now we shift our focus to the data being processed, defining
new data types and the functions (methods) that operate on them. Why? Because this approach results
in more reliable and reusable software, especially for large projects.

2.1 Object-oriented programming concepts

Object-oriented programming concepts can significantly reduce the complexity of computationally imple-
menting applied mathematics and numerical analysis methods. The object-oriented programming in the
context of scientific computations proceeds by identifying those data structures that remain unchanged
during a solution procedure and creating a corresponding set of methods that operate on these new
objects.

Our approach to achieving these goals is to define a set of new MATLAB object classes. New object
classes in MATLAB are defined by extensions of an existing MATLAB class; the new and overloaded
methods of the class are placed in a separate directory dedicated to that class.

In MATLAB, we have encountered such data types as

• double (the default data type)

• char

We now examine the struct data type which allows storage of set of variables of possibly different type
in one variable:

A.val = 1.3

A.units = ’m’

Definition: A class defines the data fields of particular stuctures (objects) of that class and the methods
(functions) that can be used on objects of that class
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2.1.1 The dimensional class

Example: We consider developing the dimensional class, with two data fields:

numerical value : A.val
units : A.units

and the following methods

constructor method (dimensional.m)
display method (display.m)
addition + (plus.m)
multiplication * (mtimes.m)

Because plus.m and mtimes.m are already defined in MATLAB as functions that normally operate on
variables of type double, we will be overloading these methods by our new definitions.

We define our new class in MATLAB by creating a new directory named @dimensional. Inside this
directory (folder), we place the constructor function dimensional.m

function B = dimensional(val,units)

% dimensional class contructor method

A.val = val;

A.units = units;

B = class(A,’dimensional’);

a display method display.m

function display(A)

% dimensional class display method

disp([num2str(A.val),’ ’,A.units])

the overloaded addition function plus.m

function C = plus(A,B)

% Dimensional class plus (+) method

if strcmp(A.units,B.units)

val = A.val+B.val;

units = A.units;

C = dimensional(val,units);

return

end

error(’Units mismatch’)

and the overloaded matrix product method mtimes.m



CHAPTER 2. OBJECT-ORIENTED PROGRAMMING IN MATLAB 45

function C = mtimes(A,B)

% dimensional class mtimes (*) method

val = A.val*B.val;

if strcmp(A.units,B.units)

units = [A.units,’^2’];

else

units = [A.units,’ ’,B.units];

end

C = dimensional(val,units);

Consider then, defining

x = 1.3 m

y = -2.0 m

z = 5.0 sec

using the calls to the constructor method dimensional.m:

>> x = dimensional(1.3,’m’)

1.3 m

>> y = dimensional(-2,’m’)

-2 m

>> z = dimensional(5,’sec’)

5 sec

and noting the format of the echoed output, defined by the display.m method. We then try out repre-
sentative calculations with our overloaded methods:

>> x + y

-0.7 m

>> x * y

-2.6 m^2

>> x * z

6.5 m sec

>> x + z

??? Error using ==> dimensional/plus

Units mismatch

>> x==y

??? Error using ==> ==

Function ’==’ not defined for variables of class ’dimensional’.

Note that MATLAB returns an error as a result of the final command because the definition of equivalence
(eq.m) has not yet been defined for objects of the dimensional class.

2.1.2 The myline class

We consider developing the myline class, with two data fields:

slope : A.a
intercept : A.b
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so that we can conveniently work with scalar linear algebraic equations of the form

y = ax + b

Therefore, objects of class myline will contain the constant coefficients of the linear equation; the
methods we will develop to create these objects and to manipulate the objects consist of:

1. constructor method (myline.m)

2. display method (display.m)

3. addition + (plus.m)

4. a method to evaluate y = ax + b (yval.m)

5. a simple plotting method (plot.m)

6. accessor methods (slope.m, intercept.m)

Because plus.m and plot.m are already defined in MATLAB as functions that normally operate on
variables of type double, we will be overloading these methods by our new definitions.

We define our new class in MATLAB by creating a new directory named @myline. Inside this directory
(folder), we place the constructor function myline.m

function A = myline(x,y)

% myline.m Constructor method for myline class. Called as

%

% A = myline(x,y)

%

% INPUT PARAMETERS

% x : x values or a (slope)

% y : y values or b (intercept)

if nargin == 0; x = 0; y = 0; end % default values

if prod(size(x)) == 1

A.a = x; A.b = y;

else

B(:,1) = x(:); B(:,2) = 1;

% Note how the line is computed by least squares, equivalent

% to coeff = (B’*B) \ (B’*y)

coeff = B\y(:);

A.a = coeff(1); A.b = coeff(2);

end

A = class(A,’myline’);

We note that the line may be computed by a least squares procedure when more than two data points
are used as input to defined the line; more details on the least-squares procedure was provided in the
previous Chapter. A display method now is defined:

function display(A)

% display.m Display method for myline class

disp(’myline class object, with y = ax+b’)

disp([’a = ’,num2str(A.a)])

disp([’b = ’,num2str(A.b)])
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the overloaded addition function plus.m

function A = plus(A,c)

% plus.m Addition method for myline class. Called as

%

% B = A+c

%

% INPUT PARAMETERS

% A : a myline object

% c : a scalar value

A.b = A.b + c;

and the overloaded plotting method plot.m

function plot(A,x0,x1,linesty)

% plot.m Plot method for myline class. Called as

%

% plot(A,x0,x1,linesty)

%

% INPUT PARAMETERS

% A : a myline object

% x0,x1 : domain over which the line will be plotted

% linesty : linestyle (optional)

x = [x0,x1];

if nargin == 3

plot(x,yval(A,x))

elseif nargin == 4

plot(x,yval(A,x),linesty)

end

the linear equation evaluation method yval.m

function y = yval(A,x)

% yval.m Evaluate y = ax+b method for myline class. Called as

%

% y = yval(A,x)

%

% INPUT PARAMETERS

% A : myline object

% x : x values

y = A.a*x + A.b;

and finally, the accessor methods slope.m and intercept.m, needed because encapsulation prevents
any methods outside the class myline from having access to the data fields of a myline object:
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function a = slope(A)

% slope.m An accessor method for myline class. Called as

%

% a = slope(A)

%

% INPUT PARAMETERS

% A : a myline object

a = A.a;

and

function b = intercept(A)

% intercept.m An accessor method for myline class. Called as

%

% b = intercept(A)

%

% INPUT PARAMETERS

% A : a myline object

b = A.b;

Consider then, defining a line that passes through the points

(x0, y0) = (0, 2)

(x1, y1) = (1, 3)

using the class constructor method; note that the display method is called in the statement below because
the semicolon normally used to suppress echo is not included; the object A is created and we determine
the methods available for use on this object:

>> A = myline([0 1],[2 3])

myline class object, with y = ax+b

a = 1

b = 2

>> methods myline

Methods for class myline:

display intercept myline plot plus slope yval

Now we display the values of the linear equation coefficients using the slope and intercept methods:

>> a = slope(A)

a =

1

>> b = intercept(A)

b =

2

We now try the remainder of the methods that have been defined, first observing the results of the plot
method in Fig. 2.1.
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>> plot(A,-1,3)

>> hold on, grid, xlabel(’x’), ylabel(’y’)

>> x = 2;

>> y = yval(A,x);

>> plot(x,y,’o’), hold off

>> B = A+1

myline class object, with y = ax+b

a = 1

b = 3

>> plot(B,-1,3,’--’)

hold off

−1 0 1 2 3
1

2

3

4

5

6

x

y

Figure 2.1: Plot of the original myline object A (solid line), and evaluation of a point on that line (circle),
and the new line B found after adding the scalar value of 2 to A.

2.2 Inheritance

The myline class was constructed from scratch by defining a new data type and its associated methods.
We can also build new classes from existing classes, where the new (derived or child) class inherits all the
data fields and methods of the parent class; new data fields can be added to the child as well as methods.
The new methods either overload some or all of the parent’s methods, and entirely new methods can
be defined. In either case, the methods defined for the child class can only access data fields defined
specifically for the child class; fields that were inherited from the parent can only be accessed through
the methods defined for the parent class.

Consider, for example, making the myline class more specific: a new class will be derived from myline

to include all the methods and data fields of the parent, and will add two new datafields describing the
limits of validity of the linear equation - think of this as defining the class of all linear models defined
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from empirical data with the domain of validity of the correlation being xmin ≤ x ≤ xmax . Data fields of
this new class are

A.myline (all data fields of the parent class)
A.xmin (Lower limit of validity)
A.xmax (Upper limit of validity))

The new constructor for this class is

function A = mylinelim(x,y,xmin,xmax)

% mylinelim.m Constructor method for mylinelim class. Called as

%

% A = mylinelim(x,y,xmin,xmax)

%

% INPUT PARAMETERS

% x : x values or a (slope)

% y : y values or b (intercept)

% xmin : x value minimum limit (optional)

% xmax : x value maximum limit (optional)

if nargin == 4

A.xmin = xmin; A.xmax = xmax;

elseif nargin == 2

A.xmin = min(x); A.xmax = max(x);

else

x = 0; y = 0; A.xmin = 0; A.xmax = 1;

end

B = myline(x,y);

A = class(A,’mylinelim’,B);

Notice how the constructor of the derived class actually can be simpler than the same for the parent
class. We now overload the display method of the myline class:

function display(A)

% display.m Display method for mylinelim class

disp(’mylinelim class object, with y = ax+b’)

disp([’a = ’,num2str(slope(A))])

disp([’b = ’,num2str(intercept(A))])

disp([’limits of validity, xmin: ’, ...

num2str(A.xmin),’ xmax: ’,num2str(A.xmax)])

and, most importantly, the yval.m method:
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function y = yval(A,x)

% yval.m Evaluate y = ax+b method for mylinelim class. Called as

% y = yval(A,x)

%

% INPUT PARAMETERS

% A : myline object

% x : x values

y = yval(A.myline,x);

I = find(x<A.xmin | x>A.xmax);

if prod(size(I)) > 0

warning(’Some input values are outside the limits’)

end

It is critical to note that the slope.m, intercept.m, plot.m, and plus.m methods operate only on the
parent class data fields and so are inherited from the parent class and so do not have to be redefined for
the new subclass. We use the new classes in the following simple example:

>> A = mylinelim([0 1],[2 3],0,1)

mylinelim class object, with y = ax+b

a = 1

b = 2

limits of validity, xmin: 0 xmax: 1

>> x = [-1 0 1 2];

>> y = yval(A,x)

yval: some input values are outside the limits

y =

1 2 3 4
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Case Study: The associative array
class

A data structure that stores a sequence of variable values and their associated names is called an asso-
ciative array. In computer science terminology, these data structures are sometimes called hash tables.
We define the assocarray class in MATLAB to perform this function; our motivation is that objects
of this type are good for storing the sets of variables and parameters that define a nonlinear modeling
problem, especially when these objects are unpack-ed into the workspace of a function.

The class is defined in the table below; the table form is a standard method to define a class and it takes
the general form

class name
class attributes (variables)
class methods (functions)

and so for the assocarray class:

assocarray
key : char cell array
val : double cell array
assocarray(key1,val1,key2,val2,...)
delete(A,key)
display(A)
getval(A,key)
insert(A,newval,newkey,I)
keyindex(A,key)
keys(A)
setval(A,newval,key,I)
sort(A)
unpack(A)
valdiff(A,B)
values(A)
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We now demonstrate several of the basic assocarray methods by creating an assocarray object
containing the keys ’p’ and ’q’ and their associated values 5 and -2:

>> A = assocarray({’p’,5,’q’,-2})

assocarray object "A":

p:

5

q:

-2

>> keys(A)

ans =

’p’ ’q’

>> getval(A,’q’)

ans =

-2

Now we insert a new key ’r’ and its associated value of 13, noting how the object A must be passed as
input to the method and how the method returns the updated version of object A:

>> A = insert(A,12,’r’,2)

assocarray object "A":

p : 2

r : 12

q : -2

>> keyindex(A,’r’)

ans =

2

We can sort the object A according to the keys using the sort method:

>> sort(A)

assocarray object "ans":

p : 2

q : -2

r : 12

3.1 Review problems

1. Create an assocarry object containing the symbols and atomic weights of the first 18 elements,
arranged by atomic number. Then, using the assocarray/sort method, print the symbols and
associated atomic weights in alphabetical order. Finally, repeat problem 5 of Chapter 1, but
extract the molecular weight information from the assocarray object you created (pass the object
through the function’s input parameter list).
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Linear systems

4.1 Writing systems of linear equations in matrix form

Systems of linear equations themselves are extremely common and important models; for example, con-
sider a set of coupled, linear equations written in the form

Ax = b. (4.1)

A model of this form might arise from a material balance over a chemical reactor in which the following
reaction takes place

P −→ Q

If F represents the total molar flow rate of reactants to the reactor, k the reaction rate, xPin and xQin the
feed mole fractions of species P and Q, respectively, and we assume the reactor contents are well mixed,
we can write a material balance for species P and Q as

F (xPin − xP) = kxP

F (xQin − xQ) = −kxP

Given these simple material balance equations, we can write them in matrix form (4.1) with

A =

[
k + F 0
−k F

]
x =

[
xP
xQ

]
b =

[
FxPin
FxQin

]

4.2 Matrix multiplication

The product Ax in (4.1) requires us to define the matrix multiplication operation. For systems where x
is a column vector, we can write

bi =
J∑

j=1

Ai ,jxj i = 1, ... , I

where the first index of Ai ,j refers to the row and the second to the column of matrix A. This operation
fixes the sizes of the arrays as

AI×JxJ×1 = bI×1.
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In general, we can premultiply the array B by array A if the maximum column index of A is identical to
the maximum row index of B:

AI×JBJ×K = CI×K

where

Ci ,k =
J∑

j=1

Ai ,jBj ,k , i = 1 ... , I , k = 1, ... , K .

It is not difficult to see that in general
AB 6= BA.

Finally, an important fact we will make extensive use of is that the transpose of a matrix product is equal
to the product of the transpose of each term in reverse order:

[AB]T = BTAT .

4.3 Solving Ax=b

Our goal is to solve linear algebra problems of the form

AI×JxJ×1 = bI×1 (4.2)

using numerical methods that are computationally reliable and give the most information about the
structure of the modeling equations themselves. Algebraically, it is possible to write the solution to (4.2)
as

x = A−1b

if A−1 exists, but computing A−1 directly satisfies neither of the stated goals. Therefore, we wish to
consider numerical methods that transform the hard problem to solve (4.2) into the easier problem

Ux = d (4.3)

where U has a structure that makes the solution to (4.3) simpler to find and gives insight into the the
problem we are solving, such as whether there are a sufficient number of equations to determine a unique
solution.

4.3.1 Factorization by Gaussian Elimination

There are an infinite number of such transformations; we will discuss Gaussian elimination with partial
pivoting, a numerical technique which reduces computational inaccuracies. Gaussian elimination applied
to (4.2) consists of a J-step forward elimination procedure to obtain the system (4.3) followed by back
substitution to compute the values x. Note that J is the number of columns of A and the number of
variables in x. The forward elimination procedure at each step j = 1, ... , J consists of the following three
main operations:

1. In the jth step of the elimination procedure, the pivot element is identified by finding the largest (in
absolute value) element Ak,j of those found in the subcolumn below (and including) the diagonal
element Aj ,j ;
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2. The pivot row elements Ak,m=1,...,J and bk then are interchanged with the jth row (this leaves the
arrays unchanged if the pivot point is the largest-magnitude element);

3. For each nonzero Am,j , m = j + 1, ... , I in the rearranged system, a multiplier is computed as
−Am,j/Aj ,j and the product of the multiplier and the pivot row is added to row m; this procedure
is used to remove all nonzero elements in each element below the pivot.

The main idea behind partial pivoting is that it tends to make the solution more resistant to small
numerical errors. Generally, large multipliers (small pivots) contribute to numerical errors: in general it
is a poor idea to multiply the pivot row with a large number and then add it to another, because the first
might wash out any contribution of the second through round off error.

The array permutations (pivoting) and other forward-elimination operations can be represented as array
operations. The coefficient array of (4.2) can be factored into the three distinct arrays

AI×J = PI×ILI×JUJ×J

where L and U have a lower and upper triangular structure, respectively, such that the solution of (4.3)
can be found by simple back substitution. P contains row permutation (exchange) information. We note
that the product PL may not have a lower triangular structure. The elements of d are also computed
from the back substitution problem

PLd = b

or Ld = Pb because P−1 = P.

It is easy to prove that P−1 = P: because P interchanges rows, an additional product operation will
return the array to its original form. Therefore, PP = I and P−1 = P follows.

4.3.2 An example of solving sets of linear equations

Consider the following set of linear equations

xM + xO = 1

yM − 220xM = 0

y0 − 0.5xO = 0

yM + yO = 1

and the problem of solving the set of linear equations Aw = b where w = [xM , xO , yM , yO ]T ; first, the
coefficient arrays are constructed

>> A = [1 1 0 0; -220 0 1 0; 0 -0.3 0 1; 0 0 1 1] % coefficient array

A =

1.0000 1.0000 0 0

-220.0000 0 1.0000 0

0 -0.3000 0 1.0000

0 0 1.0000 1.0000
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>> b = [1; 0; 0; 1] % nonhomogeneous terms

b =

1

0

0

1

and the the solution is computed in two different ways; first by inverting the matrix A and computing
the product of the array inverse with the b array:

>> w = inv(A)*b; % solution found by matrix inversion

>> disp(w’)

0.0032 0.9968 0.7010 0.2990

It is simple to use the Gaussian elimination technique in MATLAB because factorization and back sub-
stitution are combined in the \ operation.

>> w = A\b; % Gaussian Elimination -- generally better

>> disp(w’)

0.0032 0.9968 0.7010 0.2990

Factorization alone is done with the lu.m routine:

>> [L,U,P] = lu(A);

The factorization routine lu returns three arrays

L =


1 0 0 0

−0.0045 1 0 0
0 0 1 0
0 −0.3 0.0014 1

 U =


−220 0 1 0

0 1 0.0045 0
0 0 1 1
0 0 0 0.9986

 P =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


where the original coefficient array can be recovered as P*L*U and where the effect of the row interchanges
can be observed in L*U.

4.4 More equations than unknowns

To this point, the linear equation sets contained equal numbers of equations and unknowns, giving the
square systems

AI×JxJ×1 = bI×1

where I = J. For the case of I = J = 4, the Gaussian elimination procedure resulted in a system in
upper-triangular form (where the ∗’s denote potentially non-zero elements):

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 x = d with d =


*
*
*
*


and d 6= b in general.
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In this chapter we mainly consider the cases of having more equations than unknowns – the opposite
case normally can only be solved satisfactorily by returning to the modeling stage and finding the missing
modeling equations or by computing the space in which the solutions exist. A more formal discussion of
the latter concept situation will take place in the following section when the null space is defined.

Cases of I > J can be split into two distinctly different classes of computational problems

1. Redundant equations, where one or more equations is not linearly independent from the rest;

2. Overspecified problems, where all of the equations are linearly independent and no unique solution
exists.

The distinction between these cases is important for understanding the meaning of the modeling equations
and for selecting the proper numerical solution procedure.

The basic matrix operations used in the Gaussian elimination procedure are valid for the case where more
equations exist than unknowns and are the key to a rigorous test for distinguishing between these cases.

4.5 Linear vector spaces

A different way of looking at
AI×JxJ×1 = bI×1

to write
A = [a1 a2 a3]

so that
a1x1 + a2x2 + a3x3 = b.

Writing the linear system in this form emphasizes that it is the linear combination of the ai that gives
b that defines the solution to this set of linear equations. Therefore, it is apparent that if a3 is a linear
combination of a1 and a2, no unique value for x3 will exist. Note that this is different from the previous
situations where there were more equations than unknowns – this procedure indicates when there are
fewer equations than unknowns. A comprehensive discussion of this geometrical interpretation of the
linear algebra problem is discussed in Strang [26].

If r is the number of linearly independent columns (which must be equal to the number of linearly
independent rows), then r is the rank of matrix A and the linearly-independent columns define the
column space. Ax = b has a solution when b is in the column space of A. The null space of A satisfies

Ax = 0

The null space has dimension J− r and the solutions to Ax = b differ by a vector in the nullspace. If the
null space has zero dimension, x = 0 is the only solution to the homogeneous system, thus, the solution
to Ax = b is unique.

The length of a vector (originating at the origin) is defined by a norm:

d =
√

a2
1,1 + a2

2,1 + a2
3,1

=
√

aT
1 a1

=
√
〈a1, a1〉

= ‖a1‖
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where the notation 〈·, ·〉 denotes the inner product. We note that the norm defined by the inner product
of two different vectors

d =
√

a1,1a1,2 + a2,1a2,2 + a3,1a3,2

=
√
〈a1, a2〉

results in

1. d = 0 if the two vectors a1 and a2 are orthogonal;

2. The vector a1 has unit length if ‖a1‖ = 1, therefore a vector can be normalized by

ā1 =
a1

c1
with c1 = ‖a1‖. (4.4)

The projection of vector a2 onto a1 is the length l1 of a2 along a1, It is computed as the value of l1 of
the following expression

l1a1 = a2 + w

where w is a vector orthogonal to a1. If a1 is nontrivial, we can make use of the orthogonality by
projecting this equation onto a1 and solve for l1:

l1〈a1, a1〉 = 〈a2, a1〉+ 0

l1 =
〈a2, a1〉
〈a1, a1〉

=
〈a2, a1〉
‖a1‖2

.

Note that

l1 = 1 if a1 = a2

l1 = 0 if a1, a2 are orthogonal

4.5.1 The Gram-Schmidt orthogonalization procedure

The Gram-Schmidt orthogonalization procedure produces an orthonormal basis Q for a vector space
using a sequence of normalization and projection operations. Consider three, three-element column
arrays written in matrix form:

B =
[

b1 b2 b3

]
=

 1 1 −1
0.5 0 −0.1
0 0 0.1


Step 1 Normalize b1:

q1 =
b1

‖b1‖
=

 0.8944
0.4472

0

 .
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Step 2 Project b2 onto q1 to find l1 = 〈b2, q1〉 = 0.8944; subtract the result from b2, and normalize
the final result:

q2 =
b2 − l1q1

‖b2 − l1q1‖
=

 0.4472
−0.8944

0

 .

Step 3 Repeat the procedure for the third vector b3 to find l1 = 〈b3, q1〉 = −0.9391 and l2 = 〈b3, q2〉 =
−0.3578 and:

q3 =
b3 − l2q2 − l1q1

‖b3 − l2q2 − l1q1‖
=

 0
0
1

 .

Having completed the orthonormalization procedure, it is easy to check the calculations:

QTQ =

 1 0 0
0 1 0
0 0 1

 .

To summarize,

1. Because Q is orthonormal, the projection operation simply is an array product operation and so
QT = Q−1;

2. If Q is generated from A, the columns of A span the space defined by the orthonormal basis Q.

4.6 Least squares

In cases where our factorization procedure reveals that there are more independent equations than un-
knowns, we search for the best solution possible for these cases by minimizing a residual corresponding
to the solution estimate x.

We define the residual of a set of linear equations Ax = b as

r = Ax− b

noting that the residual is a vector with the same dimensions as b (an N × 1 column vector). As we
saw in the previous section, minimizing a vector means minimizing its length, which is defined by the
Euclidean norm:

length of r = ‖r‖
=
√

r · r
=
√

rTr

Having defined the residual, we minimize the square of the norm (to make computations easier) by
determining the values of x that minimize

min
x
‖r‖2 = min

x
‖Ax− b‖2.
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Now,

‖Ax− b‖2 = [Ax− b]T [Ax− b]

=
[
(Ax)T − bT

]
[Ax− b]

= (Ax)T(Ax)− (Ax)Tb− bT(Ax) + bTb

= xTATAx− 2bTAx + bTb

One can understand how the terms are combined in the final step above by remembering that each
product in the sum evaluates to a scalar value. The derivatives with respect to the xi will vanish at the
extrema of the norm of the residual:

∂

∂xi
‖Ax− b‖2 =

∂

∂xi

[
xTATAx− 2bTAx

]
for i = 1, ... , N

= AT(i , :)Ax + xTATA(:, i)− 2bTA(:, i)

= 2AT(i , :)Ax− 2AT(i , :)b

using MATLAB notation to denote a column of the coefficient array as A(:, i). Writing the derivatives
for all xi in column vector form and setting the result to zero gives:

ATAx = ATb (4.5)

We note that the product of ATA gives a square, symmetric array of the same length as x. At this point
we also note that it is easy to see that we are truly minimizing the residual because the second derivative
with respect to each xi is strictly positive:

∂2

∂x2
i

‖Ax− b‖2 = 2AT(i , :)A(:, i).

The inner product above must be positive, otherwise one of the columns of A would be zero.

It may be difficult to see how the differentiation was done in the minimization process used to find (4.5);
therefore, if we write the problem out explicitly for a 2 × 2 system and compute the derivatives with
respect to x1 and x2,

∂

∂x1

[
A11x1 + A12x2

A21x1 + A22x2

]T [
A11x1 + A12x2

A21x1 + A22x2

]
− 2

[
b1

b2

]T
∂

∂x1

[
A11x1 + A12x2

A21x1 + A22x2

]

=

[
A11

A21

]T [
A11x1 + A12x2

A21x1 + A22x2

]
+

[
A11x1 + A12x2

A21x1 + A22x2

]T [
A11

A21

]
− 2

[
b1

b2

]T [
A11

A21

]
= 2

[
A11 A21

] [ A11x1 + A12x2

A21x1 + A22x2

]
− 2

[
A11 A21

] [ b1

b2

]
Computing the derivative with respect to x2 reveals a similar structure, the only difference being in the
transposed row of A coefficients; again, stacking the array equations and setting them to zero allows us
write the results of the minimization simply as determining the solution to (4.5).

4.6.1 Linear regression models

An important application of the least-squares technique is in identifying the coefficients of linear regression
models of the form

y = β0 + β1x + · · ·+ ε
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where in this case x represents the input variable (factor) to an experiment (such as the temperature at
which a reaction takes place), y is the measured output (such as the fraction of reactant converted in
the reaction), and ε is measurement noise with expected value E (ε) = 0 and variance Var(ε) = σ2. The
... refer to additional input variables or higher-degree terms in the model.

If we perform n experiments corresponding to input values xi , i = 1, ... , n, we obtain n measured values
yi . We can write the resulting system of equations in matrix form

y1

y2

y3

...
yn

 =


1 x1

1 x2

1 x3

...
1 xn


[
β0

β1

]
+


ε1

ε2

ε3

...
εn


or

y = Xβ + ε

Given that the measured values yi differ from their true values because of the (unmeasurable) noise term
εi , our goal is to determine the best possible fit of the measured data to the model

ŷ = Xb

where the coefficients bn are our estimates of the βn, and to estimate the statistics of the noise, specifically,
σ2. Following [22], we solve for the model coefficients b by solving the least-squares problem

y = Xb

b = (XTX)−1XTy

With the model coefficients in hand, we now recover an approximation to the variance in the data by
first defining the residual sum of squares:

SSE =
n∑

i=1

(yi − ŷi )
2 = eTe

where e = yi − ŷi are the residuals - the differences between the true and predicted values. From this
definition of error, we compute the (model-dependent) approximation to the variance [22]:

σ̂2 =
SSE

n − p

where n − p represents the number of degrees of freedom in our regression problem and is defined as
the difference between the number of data points n and the regression parameters p, the latter of which
includes b0.

Defining the overall deviation of each data point yi from the mean of the data ȳ as the total sum of
squares:

SST =
n∑

i=1

(yi − ȳ)2

we can now assess the accuracy we gain (over simply averaging the measurements) using our regression
model from the R2 value:

R2 = 1− SSE

SST



CHAPTER 4. LINEAR SYSTEMS 63

In other words, as R2 → 1, the prediction error of our model grows vanishingly small relative to the
deviation from the mean, and as R2 → 0, the model essentially performs no better than if we were simply
to model the system as a constant determined by the mean value of the measurements.

Transforming nonlinear regression problems into linear form

The least squares procedure described above works only if the problem can be written so that it is linear
with respect to its parameters. Some problems that initially appear to be nonlinear regression problems
can be converted into a linear form; consider, for example, the problem of determining the activation
energy Ea and pre-exponential rate constant k0 in a chemical reaction rate equation of the form

R = k0e−E/TpA (4.6)

where experimentally measured values of the reaction rate R are given as a function of temperature T
and reactant partial pressure pA; equation 4.6 can be transformed into a linear equation by taking the
natural logarithm of each side:

ln R = ln k0 −
E

T
+ ln pA,

Likewise, the parameters of the Antoine equation (used to determine the vapor pressure of a pure liquid)

ln Psat = A− B

T + C
(4.7)

are found by rearranging (4.7) to find

T ln Psat = −C ln Psat + AT + AC − B.

Defining D = AC − B, the least squares procedure can then be carried out to identify values of A, C ,
and D, after which the value of B is determined by B = AC − D.

4.6.2 Computational example: Linear regression

In this example, we fabricate experimental data using a linear equation model and MATLAB’s random
number generator:

x = [0:0.05:1]’; n = length(x);

beta0 = 0.5; beta1 = 1; % true coefficient values

truevar = 0.05^2 % variance of noise added to data

randn(’state’,0)

y = beta0 + beta1*x + sqrt(truevar)*randn(n,1); % compute data points

Note how we fix MATLAB’s random number generator’s seed value to allow for reproducible results.
Having calculated the “experimental data,” we identify our model

ŷ = b0 + b1x

and plot the data and interpolated linear equation in Fig. 4.1.
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p = 2;

% perform linear regression

X = [ ones(n,1) x ];

coeff = X’*X\X’*y; % note precedence in action

b0 = coeff(1)

b1 = coeff(2)

yhat = b0 + b1*x;

plot(x,y,’ro’,x,yhat)

xlabel(’x’)

legend(’data’,’prediction’,2)

grid on, axis tight

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

x

data
prediction

Figure 4.1: Demonstration of least-squares fit of noisy data to a linear model.

We observe that the identified values of the coefficients b0 = 0.4936 and b1 = 1.0252 are reasonable
approximations to the true values. Likewise, knowing that the true value of the variance we set to
σ2 = 0.0025, we attempt to recover that value to find

>> SSE = (y - yhat)’*(y - yhat);

>> sighat = SSE/(n-p)

sighat =

0.0019

which is reasonably close, and

>> SST = (y-mean(y))’*(y-mean(y));

>> R2 = 1 - SSE/SST

R2 =

0.9828

which gives a strong indication that we have a good fit to our “experimental” data.
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4.7 The singular value decomposition

Any matrix AI×J can be decomposed into

A = UΣVT (4.8)

where UI×I contains the (orthogonal) left singular vectors, VJ×J contains the (orthogonal) right sin-
gular vectors, and ΣI×J contains the r = min(I , J) real, non-negative singular values on the diagonal.
Therefore, σk 6= 0 for a rank r matrix for k ≤ r and σk = 0 for all k > r .

The computational procedure defining the left and right singular vectors and singular values has a great
deal of physical meaning. Consider matrix AI×J and the problem of assessing how much a vector uI×1,
defined in the space spanned by the columns of A, contributes to each column in matrix A. In other
words, we compute the quantity σ by the projection operation

[ATu]T [ATu] = σ2 (4.9)

which can be rearranged to

uTAATu = σ2

AATu = σ2u

if the ui constitute an orthonormal sequence of vectors; therefore, the left singular vectors are computed
as the eigenvectors associated with the eigenvalue problem defined for I × I matrix AAT (eigenvalue
problems will be defined in the next Chapter).

The right singular vectors can be found similarly using the transpose of A denoted by Ā = AT

[ĀTv]T [ĀTv] = γ2

vT ĀĀTv = γ2

ATAv = γ2v

Solving the eigenvalue problem gives the J × J array V.

It can be shown that γi and σi are identical by rearraging (4.8) and comparing the results to the eigenvalue
relationships:

Avi = σiui ATui = σivi

ATAvi = σiA
Tui AATui = σiAvi

ATAvi = σ2
i vi AATui = σ2

i ui

Finally, the singular value decomposition gives insight into the action of matrix A on vector x

Ax = UΣVTx

in that VTx projects the vector x onto an orthogonal set of basis vectors spanning the column space of
A; the σi then determine the degree of stretching or contraction along these directions, and then the
column vectors that result from the product ΣVTx are used to determine the linear combination of basis
vectors in U to reconstruct the result of the matrix operation in the original space.
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4.7.1 Computational example: othogonalization using the SVD

Consider the array

A =

 1 0 2 1
1 0 2 1
0 1 0 1

 .

It should be clear that the set of vectors spanning the column space of A will contain only two vectors
because the last two columns of A are linear combinations of the first two. We should expect the singular
value decomposition to produce

• a 3×3 array U where the first two columns are the orthonormal vectors spanning the column space
of A; the third column of U is orthogonal to the first two columns of the array and is orthogonal
to every column in A;

• two non-zero singular values σ1, σ2 representing the contribution of each basis vector to all of the
columns of A (see eqn. 4.9);

• and a 4× 4 array V, the columns of which can be used to reconstruct the basis vectors contained
in U, viz,

Avi = σiui (4.10)

where vi is the ith column of V and ui is the ith column of U. Note that this implies that those
columns of V corresponding to σi = 0 define linear combinations of the columns of A that vanish,
making these vi orthogonal to the row space of A.

For this example we find

>> A=[1 0 2 1; 1 0 2 1; 0 1 0 1];

>> [U,S,V]=svd(A)

U =

-0.7004 -0.0971 -0.7071

-0.7004 -0.0971 0.7071

-0.1374 0.9905 -0.0000

S =

3.4923 0 0 0

0 1.3431 0 0

0 0 0.0000 0

V =

-0.4011 -0.1447 0.9045 -0.0000

-0.0393 0.7375 0.1005 -0.6667

-0.8022 -0.2893 -0.4020 -0.3333

-0.4405 0.5928 -0.1005 0.6667

It is easy to check that condition (4.10) holds:

>> u1 = A*V(:,1)/S(1,1)

u1 =

-0.7004

-0.7004

-0.1374
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and that the last two columns of V are orthogonal to the row space of A

>> A*V(:,3:4)

ans =

1.0e-14 *

0.0860 0

0.0860 0

-0.3608 -0.0111

Finally, we note that

1. adding a column of zeros to the A array does not change the orthogonal basis vectors U or the
non-zero singular values σi ; the first I columns of the V array change only by the addition of a row
of zeros in the row number corresponding to the column number of the zeros in A, for example

A =

 1 0 2 1 0
1 0 2 1 0
0 1 0 1 0

 generates V =


−0.4011 −0.1447 0.9045 −0.0000 0
−0.0393 0.7375 0.1005 −0.6667 0
−0.8022 −0.2893 −0.4020 −0.3333 0
−0.4405 0.5928 −0.1005 0.6667 0

0 0 0 0 1


2. and if the columns of A are orthogonal, V becomes the identity array and the nonzero singular

values are the coefficients that normalize the corresponding columns of A (see eqn. 4.4).

4.7.2 Matrix condition number

We note an important connection between the singular value decomposition and the solution to

Ax = b

whether the system is square with solution

x = A−1b

or requires the least squares solution procedure:

x = [ATA]−1ATb.

In either case, the solution can be written as

x = VΣ−1UTb

This relationship gives remarkable insight into the numerical accuracy of computing the solution to
any linear system. Written in the form above, we see that the solution consists of the projection of b
onto the orthonormal basis vectors U spanning the column space of A; elements in the resulting vector
c = UTb then are multiplied by the σi . By taking the largest singular value σ1 and the singular value
corresponding to the number of variables σJ , inverting the two means the largest contribution to the
solution x corresponds to 1/σJ and the smallest to 1/σ1; in other words, the solution takes the form

x =

 V1,1c1/σ1 + · · ·+ V1,JcJ/σJ
...

VJ,1c1/σ1 + · · ·+ VJ,JcJ/σJ

 .
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Therefore, the accuracy of the solution in terms of assessing the information lost due to finite-precision
truncation errors in terms of decimal digits lost is

lost decimal places = log10(1/σJ)− log10(1/σ1) = log10

(
σ1

σJ

)
Therefore, the condition number of a matrix can be defined as

C =
σsmallest

σlargest

with small condition numbers corresponding to nearly singular systems.

4.7.3 Computational example: solving linear systems

Many of the linear systems concepts necessary for understanding the solution of linear system have been
incorporated into the double/linearsystemsolver.m method of the mdpsas software library. Consider
solving many of the previously discussed examples in the following manner:

>> A = [1 1 0 0; -220 0 1 0; 0 -0.5 0 1; 0 0 1 1];

>> b = [1; 0; 0; 1];

>> x = linearsystemsolver(A,b,1)

Number of unknowns = number of equations: 4

Approximate rank: 4

Gaussian elimination solution

x =

0.0023

0.9977

0.5011

0.4989

and now the obviously singular system:

>> A = [1 1 0 0; 2 2 0 0; 0 -0.5 0 1; 0 0 1 1];

>> b = [1; 0; 0; 1];

>> rcond(A)

ans =

0

>> x = linearsystemsolver(A,b,1)

Number of unknowns: 4

Number of equations: 4

Approximate rank: 3

Rank deficient problem ==> no unique solution

x =

NaN

and now more equations than unknowns, but with one redundant equation:
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>> A = [1 1 -1; 0.5 0 -0.1; 0 0 0.1; 0.5 1 -0.9];

>> b = [0; 0; 10; 0];

>> x = linearsystemsolver(A,b,1)

Number of unknowns = number of equations: 3

Approximate rank: 3

Gaussian elimination solution

x =

20.0000

80.0000

100.0000

and finally, more independent equations than unknowns:

>> A = [1 1 -1; 0.5 0 -0.1; 0 0 0.1; 0.5 1 1];

>> b = [0; 0; 10; 0];

>> x = linearsystemsolver(A,b,1)

Number of unknowns: 3

Number of equations: 4

Approximate rank: 3

More equations than unknowns ==> least squares solution

x =

1.2088

-0.9066

0.8242

4.8 Review problems

1. Consider the following arrays written in MATLAB format:

A = [1 2 3; 3 2 5; 1 3 5]

B = [1; 1; 3]

C = [ 3 2 -1]

D = [1 2; 4 5; 2 -5]

E = [-2 -3 1; -1 2 3]

Construct a table indicating which products exist (e.g., AB, CD, DA, etc.), and for those cases
where a product exists, compute the result.

2. Create a MATLAB script for computing solutions to the system Ax = b for the follow systems;
which have unique solutions; why cannot some of the solutions be found?

A = [ 1 2 3; 3 4 5; 5 5 6] and b = [1; 2; 4]

A = [ 1 2 3; 3 4 5; 4 6 8] and b = [1; 2; 4]

A = [ 1 2 ; 3 4] and b = [2; 4]

A = [ 1 2 3 4; 3 4 5 6; 4 5 6 7; 5 5 6 9] and b = [1; 2; 4; 6]

A = [ 1 2 3 4; 3 4 5 6; -1 5 6 7; 5 5 6 9] and b = [1; 2; 4; 6]
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3. Repeat the previous problem with

A = [1, 1, -1; 0.5, 0, -0.1; 0, 0, 0.1; 0.5, 1 -0.9]

b = [0; 0; 10; 0]

A = [1, 1, 1, 0, 0, 0; -1, 2, 0, 0, 0, 0; 0, 0, 2, 0, 0, 0; ...

0, -1, -1, 0, 0, 0; 0, 0, 0, -1, -1, -1; 0, 0, 0, 1, -2, 0; ...

0, 0, 0, 0, 0, -2; 0, 0, 0, 0, 1, 1]

b = [1; 2; 2; -5/3; -1; -2; -2; 5/3]

A = [1, 1, 1, 1e-4; -1, 2, 0, 0; 0, 0, 2, 0; 0, -1, -1, 0]

b = [1; 2; 2; -5/3]

4. Write the following equations in matrix form and solve using the lineareqsolver.m function.

2x + 3y = −2z − 1

3x = 0

x + y + z − 2 = 0

0 = −2z − 1

3x + 5y − z = 0

x + y + z − 3 = 0

0 = −2z − 1

3x + 5y − z = 0

6x + 10y + 2z − 3 = 0

5. Using Gaussian elimination without pivoting, compute the solutions to sets of linear equations
where the elements of the A and b are defined below. Be sure to show all your work during the
forward elimination portion of the solution

A = [ 1 2 ; 3 4] and b = [2; 4]

A = [ 1 2 3; 3 4 5; 5 5 6] and b = [1; 2; 4]

A = [ 1 2 3 4; 3 4 5 6; 4 5 6 7; 5 5 6 9] and b = [1; 2; 4; 6]

A = [ 1 2 3 4; 3 4 5 6; -1 5 6 7; 5 5 6 9] and b = [1; 2; 4; 6]

6. Compare your hand-computed solutions to those produced using linearsystemsolver.m; in particular,
compare the number of independent equations identified by this function to your hand calculations.

7. An insulating wall is made up of a sequence of insulation layers of different thicknesses and thermal
conductivities. If the temperature of the interface between each later is denoted as Tj , j = 0, 1, ... , 4
located at position zj , the heat flux q through each layer can be approximated by

q = kj
Tj − Tj−1

zj − zj−1
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Given T0 = 0o C , T4 = 100o C , k1,2,3,4 = [3, 1.5, 5, 2] W /(mK ) and z0,1,2,3,4 = [0, 0.1, 0.2, 0.4, 0.45] m,
set up the four linear equations needed to solve for T1, T2, T3, and q; solve this system of equations
by hand using Gaussian Elimination with partial pivoting; compare the hand-calculated solution to
a solution computed using MATLAB.

8. The resistance of a metal follows the following relationship:

R = a + bT + cT 2

Determine parameter values, a, b, and c , using the following the two data sets. Set up a least-
squares problem for each case and determine which data set contains noisy data, assessing the
approximate value of σ2 in each case.

T (K ) 300 350 400 450 500 550 600
RA(Ohms) 15.0 17.9 21.1 24.5 28.1 31.9 36.0
RB(Ohms) 13.2 16.0 19.5 22.3 25.0 28.7 31.0

9. A rate at which a chemical reaction takes place at a constant temperature is hypothesized to have
the form

Rate = kc2

where c is the chemical species concentration (moles/m3) and k is a reaction rate coefficient
(m3/(moles sec)). Given the following data, determine the rate coefficient k using least squares;
plot the data points and the fitted curve.

c
moles

m3
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Rate
moles

m3 sec
0.2047 0.5166 0.9404 1.5553 1.7459 2.6536 2.8818 4.3548 5.4650

10. As a function of temperature, a reaction rate coefficient is found to take the form

k = k0e−Ea/T

where k0 is a rate constant, Ea is the activation energy divided by the gas constant, and T is
temperature. Given the following data, determine the rate constant k0 and activation energy Ea

using least squares; plot the data points and the fitted curve.

T K 250 300 350 400 500 600 800

k
m3

moles sec
13.3695 21.0674 29.8008 30.2843 36.4605 57.2018 56.3843



Chapter 5

Case Study: Nonadiabatic
methane/octane flash drum

As an example that makes use of many linear algebra concepts, consider the nonadiabatic flash separation
system shown in Fig. 5.1. It is assumed the system is operated in such a way that at equilibrium, two
phases (liquid and vapor) exist, and that the drum temperature and pressure can be maintained at some
specified set of values. Under these conditions, component M (methane) has a boiling point of −162oC
and component O (n-octane) 126oC; we should expect that virtually all of the methane leaves through
the vapor stream and that there is a distribution of octane in both product streams.

L mol/hr

V mol/hr

F mol/hr

zM = 0.1

zO = 0.9

xM, xO

TL, PL

yM, yO

TV, PV

vapor

liquid

TL= TV = 85 C

PL= PV = 1 atm

total M in = 10 mol/hr

Figure 5.1: The single-stage separator.

5.1 Model derivation

By the definition of mole fractions

xM + xO = 1 (liquid mole fractions)

yM + yO = 1 (vapor mole fractions)

Phase equilibrium is achieved when the chemical potential µi
α of component i is equal in each of the

phases α. The methane/octane mixture can be accurately approximated by properties of ideal mixtures,
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so

µM
l (xM , xO , Tl , Pl)− µM

v (yM , yO , Tv , Pv ) = 0 =⇒ yM/xM = KM(T , P) = 220

µO
l (xM , xO , Tl , Pl)− µO

v (yM , yO , Tv , Pv ) = 0 =⇒ yO/xO = KO(T , P) = 0.3

The K values are taken from [25]. The material balances and definition of total methane feed rate give
the four equations

Mass in = Mass out
F = V + L overall

FzM = VyM + LxM methane
FzO = VyO + LxO octane
FzM = 10 by definition

At this point we define the vector of state variables

x =



xM
xO
yM
yO
V
L
F


and so it appears there are 7 variables and 8 equations, some of which are nonlinear due to product terms
such as VyO .

If we rearrange the equations,

xM + xO = 1

yM − 220xM = 0

yO − 0.3xO = 0

yM + yO = 1 ⇑ Intensive (5.1)

——————————

V + L− F = 0 ⇓ Extensive

yMV + xML− zMF = 0

zMF = 10

yOV + xOL− zOF = 0

the full set of modeling equations can be split into two sets (corresponding to intensive and extensive
variables) which, if solved consecutively, can be solved independently:

1 1 0 0
−220 0 1 0

0 −0.3 0 1
0 0 1 1




xM
xO
yM
yO

 =


1
0
0
1

 or Ay = b


1 1 −1

yM xM −zM
0 0 zM

yO xO −zO


 V

L
F

 =


0
0

10
0

 or Bz = c.
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5.2 Solution computed using partial pivoting

Returning to the four modeling equations corresponding to the intensive variable of the flash drum
example (5.1), consider a solution obtained with pivoting, starting with interchanging the first two rows:

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

Ay =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

b


−220 0 1 0

1 1 0 0
0 −0.3 0 1
0 0 1 1

 y =


0
1
0
1


so if we multiply row 1 by 1/220 (a small multiplier) and add the product to row 2 (do not forget the
RHS!): 

1 0 0 0
1/220 1 0 0

0 0 1 0
0 0 0 1



−220 0 1 0

1 1 0 0
0 −0.3 0 1
0 0 1 1

 y =


1 0 0 0

1/220 1 0 0
0 0 1 0
0 0 0 1




0
1
0
1



−220 0 1 0

0 1 1/220 0
0 −0.3 0 1
0 0 1 1

 y =


0
1
0
1


Our multiplier is now 3/10, which gives

−220 0 1 0
0 1 1/220 0
0 0 3/2200 1
0 0 1 1

 y =


0
1

3/10
1


so interchanging rows 3 and 4,

−220 0 1 0
0 1 1/220 0
0 0 1 1
0 0 3/2200 1

 y =


0
1
1

3/10


and using −3/2200 as the multiplier gives

−220 0 1 0
0 1 1/220 0
0 0 1 1
0 0 0 1− 3/2200

 y =


0
1
1

3/10− 3/2200

 .
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The solution is found by back substitution. We now notice a very important point: If we do all of our
calculations ignoring the small terms such as 1/220 and 3/2200,

yO ≈ 0.3

yM ≈ 1− 0.3 = 0.7

xO ≈ 1

xM ≈ 0.3/220 ≈ 0.0

The same results would have been found if we neglected these terms during the elimination steps. We
compare these results to those generated by a commercial process simulator (ChemCAD) to find

yO = 0.28

yM = 0.72

xO = 0.9977

xM = 0.0023

illustrating the accuracy of our computational procedure.

5.2.1 The solution without pivoting

We now compare the results obtained without pivoting:
1 1 0 0
−220 0 1 0

0 −0.3 0 1
0 0 1 1

 y =


1
0
0
1




1 1 0 0
0 220 1 0
0 −0.3 0 1
0 0 1 1

 y =


1

220
0
1




1 1 0 0
0 220 1 0
0 0 3/2200 1
0 0 1 1

 y =


1

220
3/10

1




1 1 0 0
0 220 1 0
0 0 3/2200 1
0 0 0 −2200/3 + 1

 y =


1

220
3/10
−219


which means we find by back substitution and sloppy arithmetic an incorrect result:

yO ≈ 0.3

yM ≈ 2200(0.3− 0.3)/3 = 0

xO ≈ 1

xM ≈ 1− 1 = 0
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Why are the results so different and so clearly incorrect in the calculations without pivoting? The small
error generated in the first back substitution step (0.3 instead of the more accurate 0.2990) is greatly
magnified (2200/3 x) in the second step.

5.3 Number of equations 6= number of unknowns

Recall that the basic matrix operations used in the Gaussian elimination procedure are valid for the case
where more equations exist than unknowns and are the key to a rigorous test for distinguishing between
these cases. Consider, for example, if we use our correct approximate solution y = [xM xO yM yO ]T ≈
[0 1 0.7 0.3]T to compute the coefficients of B,

Bz =


1 1 −1

0.7 0 −0.1
0 0 0.1

0.3 1 −0.9


 V

L
F

 =


0
0

10
0

 = c

Proceeding with the elimination procedure as before, we find
1 1 −1
0 −0.7 0.6
0 0 0.1
0 0.7 −0.6

 z =


0
0

10
0




1 1 −1
0 −0.7 0.6
0 0 0.1
0 0 0

 z =


0
0

10
0

 (5.2)

which is easily solved to find

F = 100moles/hr L = 85.7moles/hr V = 100− 85.7 = 14.3moles/hr.

As before, we compare these results to those produced by a commercial process simulator:

L = 86.5moles/hr V = 13.4moles/hr

which gives us some sense of confidence in our computational procedure.

Least-squares approach

We can also solve the 4-equation and 3-unknown problem directly with the least-square approach:

BTB =

 1.58 1.30 −1.34
1.30 2.00 −1.90
−1.34 −1.90 1.83

 BTc =

 0
0
1

 .

It is left as an exercise for the reader to show that this system is equivalent to (5.2).
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5.4 Review problems

1. Write the following set of three equations in matrix form Aw = b given xM = 0.0032, xO = 0.9968,
yM = 0.7010, y0 = 0.2990, zM = 0.1, zO = 0.9, and w = [FVL]T

FzM = yMV + xML

FzM = 10

FzO = yOV + xOL

Solve for the unknowns F , V , and L using Gaussian Elimination (GE) without partial pivoting;
substitute your solution into the matrix equation defined in the first part of this problem to assess
the accuracy of your solution; find the matrix C such that CA gives the upper triangular matrix
found as a result of the forward elimination step of the GE procedure; show that Cb produces the
same vector of nonhomogeneous terms found in the hand-calculated GE procedure.



Chapter 6

Case Study: Underdetermined
systems

In this section, we consider sets of linear algebraic equations where the number of variables exceeds the
number of equations. Without additional information, unique solutions for these cases cannot be found.
However, the solutions we find yield important information regarding the systems under consideration.

6.1 Diesel fuel blending

In this case, we consider the problem of blending three feedstocks to produce diesel fuel that meets
certain specifications, such as that the final product must contain 0.05 wt% sulfur1. We blend three
feedstocks with qualities listed in Table 6.1 to achieve the product specification.

Feedstock blend wt% sulfur wt%
A mA 0.04
B mB 0.03
C mC 0.06

Table 6.1: Diesel blend feedstock qualities

During the solution of this problem, we will keep in mind that feedstock C, having the highest sulfur
content, will be treated as the lowest-value blend component, and so in the end we will want to maximize
mC in the blend. Assuming that the product diesel fuel properties can be described by a simple mixing
rule (each feedstock contributes to the blend property in a manner proportional to the weight fraction of
that feed), we can write the mass balance for the sulfur specification as

0.04mA + 0.03mB + 0.06mC = 0.05

and the definition of the weight fractions as

mA + mB + mC = 1.

1These are the maximum permissible levels as set by the US EPA in page 5135 of the Federal Register/Vol. 66, No.
12/Thursday, January 18, 2001/Rules and Regulations.
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Written in matrix form [
4 3 6
1 1 1

] mA

mB

mC

 =

[
5
1

]
we notice that the sulfur mass balance equation was scaled to simplify the arithmetic of the factorization
procedure; this operation has no effect on the solution. One step of the forward elimination procedure
gives [

4 3 6
0 1/4 −1/2

] mA

mB

mC

 =

[
5
−1/4

]
and so the bottom equation can be written as

mB − 2mC = −1 or mB = 2mC − 1

implying that mC ∈ [1/2, 1] for a physically meaningful solution. Using the equation above, value of mA

can be computed
mA = 2− 3mC

which implies mC ∈ [1/3, 2/3] to produce a physically meaningful solution. Combining the two ranges of
validity, we see that mC ∈ [1/2, 2/3] for both conditions to be valid. Returning to the issue of maximizing
mC , the optimal solution for this problem is mC = 2/3.

We can check our limits of validity by plotting the weight fractions mA, mB as a function of mC . We
first create the function dieselblend.m:

function [wA, wB] = dieselblend(wC)

% calculate weight fractions wA, wB given wC

wB = 2*wC-1;

wA = 2-3*wC;

(note how the function will operate properly when the input parameter wC is a matrix) and then the
script

mC = [0 1];

[mA,mB]=dieselblend(mC);

plot(mC,mA,mC,mB,’--’)

grid on

xlabel(’mC’); ylabel(’wt fraction’); legend(’mA’,’mB’)

Results can be seen in Fig. 6.1, where it can be clearly seen that mC ∈ [1/2, 2/3] in order that mA and
mB be positive.

6.2 Chemical reaction stoichiometry

Chemical reactions can involve a very large number of chemical species, including the species of primary
interest as well as intermediate and undesirable chemical compounds. Especially when writing chemical
reactions for equilibrium calculations, the form of the reaction may not be at all related to the fundamental
reaction processes that are actually taking place. In such cases, we wish to find the minimum number
of reactions that must be written that guarantees that all possible reactions between a specified list of
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Figure 6.1: Diesel blend mixtures resulting in 0.05 wt% sulfur.

species are accounted for. This calculation depends directly on finding the null space of a set of linear
algebraic equations.

We consider the problem of determining all possible chemical reactions that can take place in the vapor
phase of a chemical vapor deposition reactor system used to deposit thin films of copper oxide materials for
solar energy applications2. The vapor phase components of interest are CuI, Cu, Cu2, and I2; ultimately,
we would like to determine the equilibrium composition of a mixture containing these compounds, but
for now, consider only the problem of finding the chemical reactions that link all the components. We
start by forming an array A, with columns defined by the four chemical species, and rows by the elements
making up the compounds:

CuI Cu Cu2 I2
Cu 1 1 2 0
I 1 0 0 2

=⇒ A =

[
1 1 2 0
1 0 0 2

]
It is clear that the rows of A are linearly independent and so the rank(A) = 2, and so given the previous
discussion of the null space, the dimension of the null space must be 4 − 2 = 2 (the value of 4 is the
number of columns in A), and so we will be able to connect all four chemical reaction species using two
reactions. The MATLAB calculations are as follows

>> A = [1 1 2 0; 1 0 0 2];

>> null(A,’r’)

ans =

0 -2

-2 2

1 0

0 1

We note that the ’r’ argument to the null function produces solutions which are not normal orthogonal,
but contain integer-valued elements making for more sensible stoichiometric coefficients.

2SPIE paper reference
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The standard notation for reaction stoichiometry is to use positive coefficients for reactants, negative
coefficients for reaction products. The first null space vector (left column) thus gives the reaction

Cu2 → 2Cu

and the second gives the reaction
2Cu + I2 → 2CuI

both of which make physical sense and what would have been likely choices based on our intuition.



Chapter 7

Case Study: Enzyme kinetics

Because biochemical reactions take place at essentially room temperature (as compared to the highly
elevated temperatures of most chemical manufacturing processes), catalysts are needed to allow these
reactions to proceed at biologically relevant rates. Enzymes are bio-catalysts that bind with a reactant
chemical species (called the substrate) and then either rearrange or break the substrate species to form
a new product species.

An important conceptual model of the enzyme action on the substrate is given by the lock and key
model (see Fig. 7.1); the enzyme has a binding site that is configured so that only molecules of a specific
configuration (and composition) can bind with that site. Once the substrate is bound to that receptor,
the chemical reaction takes place, and the products of the reaction are released. While conceptually
attractive, this model has been supplanted by others (e.g., the induced fit model) that give a more
refined understanding of the overall process.

enzyme

substrate

enzymeenzyme-substrate complex

product

Figure 7.1: The role of an enzyme in catalyzing the decomposition of a substrate chemical species into
a product through the lock and key mechanism.

Given this physical description of the reaction process, we can begin to quantify the rate at which the
reactions take place by first defining the chemical species E = enzyme, P = product, and S = substrate
(reactant). With this notation, the reactions to form the enzyme-substate complex ES and the subsequent
product P can be written as

E + S
k1

−→
←−
k−1

ES
k2

−→ E + P.
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7.1 Michaelis-Menten kinetics

The total rate at which the substrate S is consumed and product species P is produced will depend on
the concentration of the relevant chemical species in the solution. To distinguish the species (e.g., S)
from its concentration value, the [ ] notation frequently is used, and so the concentration of S will be
denoted [S]. It is important to keep clear the differences between this notation and the use of the brackets
to denote MATLAB matrices.

We now consider a case where the enzyme and substrate are mixed initially in a flask and some means
of measuring the instantaneous substrate concentration and product production rate are available (as
an approximation, one may accurately measure the initial substrate concentration and then estimate
the initial reaction rate from data taken shortly after the reaction proceeds). The overall system is
homogeneous - the enzyme is not fixed to a solid substrate, but is well-mixed with the reactants. In this
experiment, the initial enzyme concentration [E0] also is known.

A critical assumption in analyzing the kinetics of the process is that the reaction between the substrate
and enzyme is extremely fast relative to the reverse reaction or the product-forming reaction; under
this assumption the concentration of the ES complex is at quasi-steady state with respect to substrate
concentration [S]:

k1[E ][S ]− k−1[ES ]− k2[ES ] = 0

or

[ES ] =
k1[E ][S ]

k−1 + k2
=

[E ][S ]

Km

with

Km =
k−1 + k2

k1
.

Determining a total molar balance on the enzyme:

[E0] = [E ] + [ES ] so [E ] = [E0]− [ES ]

and

[ES ] =
([E0]− [ES ])[S ]

Km
=⇒ [ES ] =

[E0][S ]

Km + [S ]
.

So the production rate of species P (mol/time or mass/time) is

Rp = k2[ES ] =
k2[E0][S ]

Km + [S ]
=

Vm[S ]

Km + [S ]
.

Having found

Rp =
Vm[S ]

Km + [S ]
(7.1)

we can invert the equation to find
1

Rp
=

Km

Vm

1

[S ]
+

1

Vm

and so the traditional method to determining the rate parameters Vm and Km is to create a plot of 1/Rp

versus 1/[S ] in the form of a Lineweaver-Burk plot, where the intercept is used to determine Vm, and
the slope is used to subsequently determine Km.
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[S] (a) (b) (c) (d)
12.0 13.3 17.5 15.4 15.0

1.5 6.4 6.45 6.23 6.0
6.0 13.3 12.2 13.1 12.0

15.0 16.2 14.9 15.2 15.0
0.5 2.95 2.92 3.01 3.0
8.0 14.4 13.2 14.4 15.0
2.0 7.91 7.67 7.52 7.0

20.0 15.9 15.4 13.7 15.0
10.0 15.0 13.8 15.1 15.0

5.0 11.2 11.5 12.2 12.0
1.0 4.94 4.97 4.67 5.0
3.0 8.45 9.39 9.54 10.0

Table 7.1: Enzyme kinetic data taken from [7].

Given a set of data corresponding to measured values of Rp versus [S ], we can use the least squares
technique to fit a straight line ŷ = b0 + b1x through the plotted data y = 1/Rp versus x = 1/[S ],
determine Vm from b0, and then Km from b1 and Vm. However, because Vm is used to compute Km, any
error in determining the former is propagated in computing the latter. One approach that may result in a
more balanced distribution of error among the identified coefficients is to rearrange (7.1) in the following
way:

RpKm − [S ]Vm = −Rp[S ] (7.2)

7.1.1 Reaction data

We demonstrate our approach using data taken from Table 1.1 of [7] and reproduced in Table 7.1. The
first column of the data represents the substrate concentrations (experiment inputs) and the remaining
four columns represent four sets (a-d) of experimental data. Using (7.2), we identify a set of Km and
Vm values for each of the four data sets (a-d) and plot the results in Fig. 7.2. We see that in each case,
we achieve a reasonable degree of accuracy in terms of the model fit. In particular, case (a) appears to
be the best in that the residuals (the difference between the model prediction and measured values) are
normally distributed and are not a function of Rp. However, we see that one data point in (b) appears
questionable, there is a strong dependence of the residual on Rp in case (c), and the lack of precision in
data set (d) strongly affects the residual for that case.

7.2 Review Problems

1. Determine the Michaelis-Menten kinetics constants Vm and Km for the following set of data:

[S ] = [0.138, 0.220, 0.291, 0.560, 0.766, 1.46]

and
Rp = [0.148, 0.171, 0.234, 0.324, 0.390, 0.493]
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Figure 7.2: Plots of demonstration data compared to rate curves fitted by linear regression (left) and
residual plots (R̂p − Rp versus R̂p).
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Case Study: Least squares fit of CVD
reactor data

It has been observed that the temperature of a lamp-heated wafer in a chemical vapor deposition reactor
can be a strong function of gas temperature when the lamp power and all other factors are kept constant
[5]. In the cited tungsten CVD reactor system study, the following dependency was measured:

Heating lamps

Feed gas with
composition x

ExhaustWafer temperature = T

Quartz window
H2 mole fraction (x) T (K)

1.0 553.33
0.8 577.33
0.6 602.33
0.4 626.67
0.0 672.67

Figure 8.1: Wafer temperature as a function of gas composition; x represents H2 model fraction in a
hydrogen-nitrogen gas mixture.

8.1 The least squares fit

We wish to fit these data to the following linear equation:

T = ax + b
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using a least squares procedure. First, the equations are written out explicitly as

T1 = ax1 + b

T2 = ax2 + b
...

T2 = ax2 + b

so
T = Ay

with

A =


x1 1
x2 1
...

...
xN 1

 , T =


T1

T2

...
TN

 and, y =

[
a
b

]

8.2 Using linearsystemsolver

Given the experimentally determined wafer temperature values T at the given gas composition values x,
we set up the coefficient array A and find the coefficient values using the linearsystemsolver function;
the experimental values and plot of the linear function fitted to these data are shown in the left side of
Fig. 8.2.

>> x = [1; 0.8; 0.6; 0.4; 0];

>> T = [553.3; 577.3; 602.3; 626.7; 672.7];

>> A = [x, ones(size(x))];

>> coeff = linearsystemsolver(A,T)

coeff =

-119.7432

673.5162

>> plot(x,coeff(1)*x+coeff(2),x,T,’o’)

8.3 Using the myline class

We carry out these operations by using the data to define an object of mylinelim class:
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>> x = [1; 0.8; 0.6; 0.4; 0];

>> T = [553.3; 577.3; 602.3; 626.7; 672.7];

>> A = mylinelim(x,T)

mylinelim class object, with y = ax+b

a = -119.7432

b = 673.5162

limits of validity, xmin: 0 xmax: 1

>> plot(A,0,1)

>> hold on

>> plot(x,T,’o’)

>> grid on, xlabel(’H_2 mole fraction’), ylabel(’T (K)’)
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Figure 8.2: Expermental data plotted with the linear interpolation.

The results are plotted in the right side of Fig. 8.2, illustrating the good fit achieved using the linear
interpolation. The large temperature variation with gas composition is attributed to the much higher
thermal conductivity of H2 relative to N2. Note that when the yval method is asked to compute a value
outside the range of validity, a warning message is produced.

>> Ttest = yval(A,1.1)

yval: some input values are outside the limits

Ttest =

541.7986



Chapter 9

Linear ordinary differential equations

In this chapter, we study systems that vary as a function of time, spatial position, or are otherwise
distributed in the sense that one or more states of the system depend on a coordinate value. We
focus on two common forms of this type of model: those systems that depend on the derivative of the
model’s state(s) as a function of time or of spatial position. Examples of the first include models with
accumulation terms, and the second includes models where the transport of heat or chemical species is
a function of temperature or mole fraction gradient, respectively.

9.1 Scalar ordinary differential equations

Consider, for example, a liquid storage tank in which the rate of liquid outflow is proportional to the
height h of liquid in the tank. The tank has cross-sectional area A and has a constant volumetric input
flow rate of q. A model describing the liquid height in the tank can be written as

A
dh

dt
= q − αh (9.1)

where t represents time and α the proportionality constant defining the liquid outflow rate. We can
proceed immediately to finding a general solution to (9.1), but normally we are more interested in finding
the particular solution corresponding to an initial condition:

h(t = 0) = h0. (9.2)

Let us first consider the simpler case where there is no inflow of liquid to the tank (q = 0); the problem
reduces to

dh

dt
= −α

A
h = −γh (9.3)

subject to the initial condition (9.2).

For this system with no inflow to the tank, we intuitively expect that for some initial condition the level
h will drop in time, asymptotically reaching h→ 0 as t →∞. This makes sense in many other contexts;
for example, if we had a microbial population that reproduced at a rate proportional to the population p

89
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with rate constant b and died with rate constant d , the overall population balance would take the form

dp

dt
= bp − dp = λp.

Therefore, if λ < 0, the population ultimately would die out, if λ > 0, the population would grow
explosively, and if λ = 0 the population would remain constant. Known as an eigenvalue, the sign of λ
determines the stability of the system (whether perturbations grow infinitely large or dissipate) and the
magnitude the time constant of the system. As we will see, an eigenvalue has real physical meaning and
can be a strong function of the system’s parameters.

With this qualitative understanding of the expected solution in hand, we turn to solving (9.3) subject to
initial condition (9.2) with the three-step procedure:

1. Assume that the form of a solution consists of the product of a time-dependent function and a
constant;

2. Substitute this guess into the differential equation and determine a general solution by adjusting
some of the constants of the assumed solution so that the differential equation is satisfied;

3. Compute a particular solution that satisfies the initial conditions using any remaining undefined
constants.

While this may first appear to turn a simple problem into a more elaborate procedure, we will find this
procedure to be applicable to all differential equation models to follow, including the numerical procedures
for finding approximate solutions to nonlinear partial differential equation models.

Therefore, as step 1, we try
h = ceλt (9.4)

as a solution, containing the two unknown constants λ and c ; Step 2 requires substituting this into (9.3):

d

dt

(
ceλt

)
= −γceλt

λceλt = −γceλt

λ = −γ.

Thus, the general solution satisfies the ordinary differential equation (9.3), and can be written as

h(t) = ce−γt .

The particular solution satisfies both the differential equation and the initial condition:

h0 = ce−γ×0 =⇒ c = h0

so
h(t) = h0e−γt .
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9.1.1 A non-homogeneous problem

Before moving on to sets of linear, autonomous differential equations, let us consider the scalar differential
equation and initial condition:

dx

dt
= αx + β subject to x(0) = x0 (9.5)

which is the form of the storage tank problem with non-zero inlet feed flow rate.

This linear, scalar, time-invariant ordinary differential equation is solved easily by first transforming the
nonhomogeneous problem to homogeneous form by using the variable transformation

y = αx + β

dy

dt
= α

dx

dt
= α [αx + β]

= αy

so the particular solution is

y = y0eαt

αx(t) + β = [αx0 + β] eαt

x(t) = −β
α

+

[
x0 +

β

α

]
eαt

This solution makes physical sense, because at t = 0 x = x0 and as t →∞ x → −β/α provided α < 0.

9.2 Sets of linear ODEs

If we now consider the problem of determining the solution to a set of coupled ordinary differential
equations

dz

dt
= Az subject to z(0) = z0 (9.6)

we can pose a guess for the solution as
z = eAtz0 (9.7)

which is similar in form to (9.4) except for the more complicated exponential function in time; eAt is
known as the matrix exponential. Our solution begins with defining a new set of state variables q; these
states can be seen as the linear combinations of the eigenvectors contained in U [26] that produce the
vector z:

z = Uq.

Substituting this into (9.6):

U
dq

dt
= AUq subject to q0 = U−1z0

dq

dt
= U−1AUq



CHAPTER 9. LINEAR ORDINARY DIFFERENTIAL EQUATIONS 92

Under most circumstances we encounter, the matrix A can be factored into the product

A = UΛU−1 (9.8)

where Λ is a diagonal array, and so

dq

dt
= Λq

=

[
λ1 0
0 λ2

]
q.

The last equation is so important, we write it out explicitly for this 2× 2 case and will return to it in a
later discussion:

dq1/dt = λ1q1;

dq2/dt = λ2q2.

We have solved this problem before (see equation 9.4). Thus, we can write a solution for the decoupled
linear equations in matrix form:

q =

[
eλ1t 0

0 eλ2t

]
q0

U−1z = eΛtU−1z0

z = UeΛtU−1z0.

Therefore, we see the matrix exponential is defined as

eAt = UeΛtU−1.

Substituting this solution into the set of differential equations (9.6) validates the particular solution,

d

dt

(
UeΛtU−1z0

)
= AUeΛtU−1z0

UΛeΛtU−1z0 = AUeΛtU−1z0

UΛ = AU

so indeed (9.8) holds true and
Au1 = λ1u1, Au2 = λ2u2

where ui are the column vectors of U.

9.2.1 Computing eigenvalues/vectors

As part of our procedure for computing a general solution to the set of ordinary differential equations,
we must solve the eigenvalue problem

Au = λu or (A− λI)u = 0.

Writing this out for a 2× 2 system: [
A1,1 − λ A1,2

A2,1 A2,2 − λ

]
u = 0 (9.9)
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Given the coefficient array A, we can use our linear equation solving tools to determine λ1 and λ2 that
correspond to non-trivial u1 and u2, respectively. Because of the constraint that we find only non-trivial
ui , the coefficient array in (9.9) must be singular; using one step of the forward elimination procedure
gives  A1,1 − λ A1,2

0 A2,2 − λ−
A1,2A2,1

A1,1 − λ

u = 0

and so setting

A2,2 − λ−
A1,2A2,1

A1,1 − λ
= 0

gives a quadratic characteristic equation for this 2× 2 system:

λ2 − (A1,1 + A2,2)λ+ A1,1A2,2 − A1,2A2,1 = 0. (9.10)

Using the definitions of the trace and determinant of the A matrix

tr(A) = A1,1 + A2,2 and det(A) = A1,1A2,2 − A1,2A2,1

we see that the eigenvalues switch from being real and distinct to complex when the discriminant

∆ = tr(A)2 − 4det(A)

vanishes. The eigenvalues themselves for this 2× 2 system are found to be

λ1,2 =
tr(A)±

√
tr(A)2 − 4det(A)

2
.

Substituting the eigenvalues λi into (9.9), we can determine the corresponding eigenvectors ui :[
A1,1 − λ1 A1,2

A2,1 A2,2 − λ1

]
u1 = 0

u1 = c1

[
U1,1

U2,1

]
corresponding to λ1[

A1,1 − λ2 A1,2

A2,1 A2,2 − λ2

]
u2 = 0

u2 = c2

[
U1,2

U2,2

]
corresponding to λ2

The constants c1, c2 can be anything including zero: we can write the results in array form:

V =

[
U1,1 U1,2

U2,1 U2,2

] [
c1 0
0 c2

]
= UC.

and substituting these eigenvectors into the solution using q = V−1z,

q = eΛtq0

z = UCeΛtV−1z0

= UCeΛtC−1U−1z0

= UeΛtU−1z0 because C and eΛt are diagonal arrays.

Therefore, the solution does not depend on the values c1 and c2.
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9.2.2 Eigenvectors and the phase space

Using our view that the vector of initial conditions z0 can be written in terms of a linear combination of
the eigenvectors U:

Uq = z0

we see that the solution approach we have described also gives a clear view into the modal structure of
the particular solution:

1. At t = 0, we decompose the initial condition column vector into some linear combination of the
(column) eigenvectors (i.e., we project the initial condition vector onto the eigenvectors):

z0 = q1u1 + q2u2;

2. The solution then evolves as the lengths of the individual vectors qjuj shrink or grow, independently
of one-another and at a rate depending on the corresponding eigenvalues λ1 and λ2:

z = q1eλ1tu1 + q2eλ2tu2. (9.11)

We see that if the initial condition falls directly on one of the eigenvectors, it stays on that eigenvector
for all time.

For the 2× 2 system, we write the solution out explicitly as[
x
y

]
= q1

[
U1,1

U2.1

]
eλ1t + q2

[
U1,2

U2.2

]
eλ2t

Consider plotting the solution z(t) as a curve in the (x , y) plane (the phase plane); plots of these type
result in curves that begin at the initial condition and are parameterized by time.

We can observe the manner by which trajectories in the phase plane are governed by the magnitude
of the eigenvalues and location of the eigenvectors by computing these quantities and then plotting
the eigenvectors together with plots of the linear ODE solution computed using randomly chosen initial
conditions. This is done in the MATLAB script below for

A =

[
−2 1
1 −1.5

]
and results are displayed in Fig. 9.1. For this example, we find that both eigenvalues are real, distinct,
and less than zero; this corresponds to a stable node. The figure illustrates how the trajectories, as they
approach the origin, are contracted more strongly along the eigenvector direction corresponding to the
larger in magnitude eigenvalue.
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Figure 9.1: A demonstration of using lodesolver.m, showing how the trajectories in phase space are
organized by the eigenvectors of the coefficient matrix.

A = [-2 1; 1 -1.5]

[U,S] = eig(A)

plot([-U(1,1) U(1,1)],[-U(2,1) U(2,1)], ...

[-U(1,2) U(1,2)],[-U(2,2) U(2,2)],’Linewidth’,2)

legend(’u_1’,’u_2’)

xlabel(’x’), ylabel(’y’)

grid on

title([’\lambda_1 = ’,num2str(S(1,1)),’ \lambda_2 = ’,num2str(S(2,2))])

t = [0:0.1:2];

hold on

for i = 1:20

z0 = 2*rand(2,1)-[1;1];

z = lodesolver(A,t,z0);

plot(z(1,:),z(2,:),’r.-’)

end

hold off

9.2.3 Real and distinct eigenvalues (∆ > 0)

When the discriminant ∆ is positive, we have the following possibilities:
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Figure 9.2: Phase portraits for cases where ∆ > 0.

1. tr(A) < 0 and det(A) > 0 results in two negative eigenvalues and corresponds to a stable node;

2. tr(A) < 0 and det(A) < 0 results in eigenvalues of opposite signs and corresponds to a saddle
point; tr(A) > 0 and det(A) < 0 also results in eigenvalues of opposite signs and corresponds to
a saddle point

3. tr(A) > 0 and det(A) > 0 results in two positive eigenvalues and corresponds to an unstable node

4. det(A) = 0 results in one eigenvalue with value 0 and the other positive or negative depending on
the sign of tr(A); when the latter is negative the system is neutrally stable, and when positive, the
system is unstable.

Examples of each case can be found in Fig. 9.2 and a summary of the expected behavior is shown in
Fig. 9.3.

9.2.4 Repeated eigenvalues (∆ = 0)

The eigenvalues are real and identical when ∆ = 0 for the 2 × 2 system. Because only one eigenvector
u1 can be computed in this situation, but initial conditions can be defined anywhere in the phase plane,
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Figure 9.3: Expected dynamic behavior as
a function of tr(A) and det(A).

another linearly independent general solution must be found for the set of ODEs. We begin by rewriting
(9.11) in a form that is valid for solutions to a set of N linear ODEs with distinct eigenvalues λn

z =
N∑

n=1

qneλntun

where the initial condition z0 is used to determine the qn using q = U−1z0. For the case λN = λN−1

let’s try

z =
N−1∑
n=1

qneλntun + qN

(
teλN tuN−1 + eλN tw

)
(9.12)

as a solution where, as before,

(A− λnI) un = 0 n = 1, 2, ... , N − 1 (9.13)

but now
(A− λN I) w = uN−1. (9.14)

To prove this is the true solution, we substitute (9.12) into (9.6) to find

N−1∑
n=1

qnλneλntun + qNeλN tuN−1 + qNtλNeλN tuN−1 + qNλNeλN tw

=
N−1∑
n=1

qneλntAun + qNteλN tAuN−1 + qNeλN tAw.

From the equation above, we conclude that (9.12) is indeed a solution to (9.6) for the case of two
repeated eigenvalues because (9.13) implies both

N−1∑
n=1

qneλntAun − qnλneλntun = 0

and
qNteλN tAuN−1 − qNtλNeλN tuN−1 = 0
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Figure 9.4: A phase portrait for the case ∆ = 0.

because λN = λN−1 in the second equation. This leaves

qNeλN tAw − qNλNeλN tw = qNeλN tuN−1

which is true if (9.14) is satisfied.

A representative case can be seen in Fig. 9.4 for

A =

[
−2 −1

1 0

]
.

For this case we find

λ1 = λ2 = −1 with u1 = u2 =

[
1
−1

]
.

Now using (9.14) we find[
−1 −1

1 1

]
w =

[
1
−1

]
so clearly w =

[
0
−1

]
is a valid solution for w. The eigenvector u1 and w, together with representative time-dependent trajec-
tories for this stable system are plotted in Fig. 9.4. To check this solution, we observe that dx/dt = 0
along the line y = −2x ; this indicates that trajectories in time will switch their left-to-right direction
along this line. Furthermore, we observe that dy/dt = 0 when x = 0 and so trajectories switch in the
vertical direction along this axis. We see evidence for both behaviors in Fig. 9.4.
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Figure 9.5: Phase portraits for cases where ∆ < 0.

9.2.5 Complex eigenvalues (∆ < 0)

For cases of complex eigenvalues λj = α+iβ, λj+1 = α−iβ and the associated eigenvectors uj = uR+iuI ,
uj+1 = uR − iuI , the solution can be written in the form

z = · · ·+ qje
αt
[
uR cos(βt)− uI sin(βt)

]
+ qj+1eαt

[
uR cos(βt) + uI sin(βt)

]
+ ...

and so the solution has an oscillatory component with frequency β and an amplitude growth rate governed
by α; the eigenspace associated with this oscillatory mode is defined by span{uR , uI}. See [15] for more
information and Fig. 9.5 for representative phase portraits.

A simple way to determine the direction of rotation of the trajectories around the origin is to consider
the system when x = 0; the differential equation for x at this point becomes

dx

dt
= A1,2y

and so the system rotates in the clockwise direction when A1,2 > 0 and counterclockwise when A1,2 < 0.
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9.2.6 Symmetric systems

If the coefficient array A for our 2× 2 system is symmetric and we compute the inner product of the two
eigenvectors

uT
1 u2 = 1− 1 = 0 =⇒ u1 and u2 are orthogonal.

This is, in fact, one of the general properties of symmetric systems. Proof follows [16]; if we consider
the two eigenvalue problems where λ1 and λ2 are distinct eigenvalues of A = AT:

Au1 = λ1u1 Au2 = λ2u2 (9.15)

so

(Au1)T = λ1uT
1

uT
1 A = λ1uT

1

uT
1 Au2 = λ1uT

1 u2 (9.16)

where the last equation was obtained from postmultiplying the second by u2. Premultiplying the second
equation of (9.15) by uT

1 we find
uT

1 Au2 = λ2uT
1 u2

and subtracting this from (9.16) gives

0 = (λ1 − λ2)uT
1 u2

which implies that u1 and u2 are orthogonal for λ1 6= λ2:

u1 · u2 = 0.

Another important property of the eigenvectors generated from symmetric coefficient arrays A is demon-
strated by first writing the array of column eigenvectors as

U =
[

u1 u2 ... uN

]
and so

UTU =


u1 · u1 u1 · u2 u1 · u3

u2 · u1 u2 · u2 u2 · u3

. . .

uN · uN



=


u1 · u1 0 0

0 u2 · u2 0
. . .

uN · uN

 .

If uj · uj = 1 for j = 1, ... , N,
UTU = I.

If the last condition (uj · uj = 1) holds, the eigenvectors form an orthonormal set of vectors and

UT = U−1.
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This simplifies evaluating the vector of coefficients q because

q = UTz0

and so the initial conditions are projected directly onto the eigenvectors – in other words, we can calculate
the qj as being the lengths along the uj directly.

9.2.7 Unsymmetric systems

In cases where the matrix A is unsymmetric (A 6= AT), if we compute the eigenvalues of A and AT, we
find that the eigenvalues are identical. If the eigenvalues λ1 and λ2 are distinct,

Au1 = λ1u1 ATv2 = λ2v2 (9.17)

so

(Au1)T = λ1uT
1

uT
1 AT = λ1uT

1

uT
1 ATv2 = λ1uT

1 v2 (9.18)

where the last equation was obtained from postmultiplying the second by v2. Premultiplying the second
equation of (9.17) by uT

1 we find
uT

1 ATv2 = λ2uT
1 v2

and subtracting this from (9.18) gives

0 = (λ1 − λ2)uT
1 v2

which implies that u1 and v2 are orthogonal for λ1 6= λ2:

u1 · v2 = 0.

This means the factorization which diagonalizes A is

U−1AU = VTAU = Λ.

9.3 Summary of solutions to sets of linear ODEs

Given the general set of N independent linear equations

dz

dt
= Az

subject to initial conditions z(t = 0) = z0, we can write the solution as

z(t) = UeΛtU−1z0 for any A

z(t) = UeΛtUTz0 for symmetric A

where Λ is a diagonal array of eigenvalues and U is the array of associated eigenvectors.
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Solutions to the nonhomogeneous system

dz

dt
= Az− b (9.19)

where b is a vector of constants the same size as z, subject to initial conditions z(t = 0) = z0, can
be computed using a change of variables. Defining s = Az − b and substituting it into (9.19), we find
a homogeneous set of ordinary differential equations subject to the transformed initial conditions s0.
Solving this problem and transforming back to z, the solution, after several simplifying steps, can be
written as

z(t) = UeΛtU−1z0 − A−1
[
UeΛtU−1 − I

]
b for any A

= UeΛtUTz0 − A−1
[
UeΛtUT − I

]
b for symmetric A

where I is the identity matrix. Note that the steady state solution can be computed as zstst = A−1b.

9.4 Boundary-value problems

We now discuss an important class of linear ordinary differential equations that arise in many chemical
engineering modeling problems. Consider, for example, the problem of computing the steady state,
but spatially dependent temperature profile T (ξ), in a uniform, one-dimensional material defined over
0 ≤ ξ ≤ 1. Furthermore, we define the temperature at the endpoints as T (ξ = 0) = 1 and T (ξ = 1) = 0.
Later in this test, we will shown that this situation can be described by the nonhomogeneous, second-order
boundary-value problem (BVP):

d2T

dξ2
= 0 (9.20)

subject to the boundary conditions

T = 1 at ξ = 0

T = 0 at ξ = 1

An important distinction between this type of problem and the ones studied previously in this chapter
is that the conditions used to define the particular solution are not all defined at one point along the
coordinate ξ, but are defined at the boundaries of the region of interest, hence the name BVP.

Clearly we can solve (9.20) by directly integrating it twice with respect to ξ to obtain the general solution

T (ξ) = aξ + b (9.21)

where a and b are the constants of integration. We then can use the two boundary conditions to determine
values for a and b to find the particular solution:

T (ξ) = 1− ξ.

The resulting linear profile makes sense in that an assumption implicit to (9.20) is that Fourier’s Law
holds, necessitating a constant temperature gradient for the steady state when there are no internal heat
generation terms.
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9.4.1 Where are the eigenvalues?

After our substantial previous efforts at computing eigenvalues and eigenvectors, a natural question to
ask is where do these concepts appear in the solution of this BVP. We start our explanation by splitting
(9.20) into the following two first-order ODEs:

dT

dξ
= y

dy

dξ
= 0

and so
d

dξ

[
T
y

]
=

dz

dξ
=

[
0 1
0 0

]
z = Az.

We can immediately observe that det(A) = 0 and tr(A) = 0 indicating that

λ1 = λ2 = 0 and u1 = u2 =

[
1
0

]
.

We now use (9.14) to find w: [
0 1
0 0

]
w =

[
1
0

]
so w =

[
0
1

]
and the general solution is[

T
y

]
= q1e0

[
1
0

]
+ q2

(
ξe0

[
1
0

]
+ e0

[
0
1

])
.

Further simplification shows that the temperature profile is

T (ξ) = q1 + q2ξ

which is exactly the same as the solution (9.21) computed by direct integration of the original BVP.

9.4.2 A nonhomogeneous BVP

If we now consider the same problem of heat transfer in one-dimension, but add a constant heat source
term along the length of the spatial dimension, we obtain the BVP

d2T

dξ2
+ γ = 0

subject to the same boundary conditions as before

T = 1 at ξ = 0;

T = 0 at ξ = 1.

Again, directly integrating twice with respect to ξ and then applying the boundary conditions, we find

T (ξ) = 1− 1

2
γξ2 +

(
1

2
γ − 1

)
ξ.
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The resulting quadratic profile bows upward in the center region when the heat source is positive (γ > 0),
and bows down in the opposite case.

We now split the BVP into the two first-order ODEs:

d

dξ

[
T
y

]
=

dz

dξ
=

[
0 1
0 0

]
z−

[
0
γ

]
= Az− b.

Using our standard variable transformation s = Az− b we find the general solution

s(ξ) = Az(ξ)− b = q1

[
1
0

]
+ q2

(
ξ

[
1
0

]
+

[
0
1

])
and so

y = q1 + q2; ξ

γ = q2.

Therefore, substituting the second equation above into the first and integrating once with respect to ξ
gives

T (ξ) =
1

2
γξ2 + q1ξ + q3

validating that after we determine the constants q1 and q3 using the boundary conditions, that both
solution approaches produce precisely the same solution.

9.4.3 A diffusion-convection problem

Finally, let us consider the BVP
d2T

dξ2
− αdT

dξ
+ βT = 0

subject to the same boundary conditions as before

T = 1 at ξ = 0;

T = 0 at ξ = 1.

In this problem, the −α(dT/dξ) term represents the convective transport of thermal energy in the
positive ξ direction when α, a constant proportional to the velocity of the material, is positive. The last
term βT represents a temperature dependent heat source.

Splitting the BVP into the two first-order ODEs:

d

dξ

[
T
y

]
=

dz

dξ
=

[
0 1
−β α

]
z = Az.

We observe that det(A) = β and tr(A) = α indicating that

λ1,2 =
−α±

√
α2 − 4β

2
with U =

[
1 1
λ1 λ2

]
.
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We see that distinct, real eigenvalues will be found when the convection term coefficient is sufficiently
large relative to the heat generation term coefficient. We can write the general solution as

T (ξ) = q1eλ1ξ + q2eλ2t

and the particular solution is found using the boundary conditions and solving the following linear system:[
1 1

eλ1 eλ2

] [
q1

q2

]
=

[
1
0

]
.

9.5 Review problems

1. Consider the CSTR modeling equations describing the constant-volume reactor in which the reaction
A ⇐⇒ B =⇒ C takes place:

dxA
dt

= (0.1− xA)− 4xA + xB

dxB
dt

= (0− xB) + 4xA − xB − xB

(a) Write the equations in matrix form;

(b) Compute the steady state solution(s), if any;

(c) Compute the eigenvalues and associated eigenvectors of the coefficient array using hand-
calculation methods that can be extended to higher-dimensional systems;

(d) Normalize the eigenvectors;

(e) Write the solution for xA(0) = 1, xB(0) = 0 and plot the results.

2. Consider the linear system of ODEs:
dz

dt
= Az− b

with

A = [-2, 2; 3, -4]

b = [1; 2]

subject to initial conditions z = 0.

(a) Compute the steady-state solution by hand using Gaussian elimination; compare your result
to that produced using linearsystemsolver.m

(b) Using lodesolver.m, compute the solution in time, starting from t = 0 and the given initial
conditions; determine the length of time necessary for the solution to reach within 5 percent
of the steady state value.

3. Consider the system dx/dt = Ax. For the following A matrices, plot the trajectories as a function
of time over the time interval 0 ≤ t ≤ 2 for the initial conditions x = [1;1] for the first three
systems, and for x = [1;1;1].
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A = [ 1 2; 3 4]

A = [-1 0; 0 3]

A = [-1 -1; 3 -3]

A = [-1 2 3; 0 -2 0; 0 1 -1]

4. Compute the eigenvalues of the arrays in the previous problem using the MATLAB function eig.m
and interpret the results of the first problem with respect to the conclusions you draw from a
stability analysis of the system based on the eigenvalues.

5. Consider the system dx/dt = Ax. For the following A matrices, compute the eigenvalues and
eigenvectors by hand; plot the eigenvectors for each case and describe the expected dynamic
behavior in each case (e.g., is the system stable?)

A = [ -3 0; 1 -0.5 ]

A = [ -3 0; 0 1 ]

A = [ 0 -2; -2 0 ]

A = [ 0 2; -2 0 ]

A = [ 1 1; 1 1 ]

A = [ 1 2; -2 -4 ]

A = [ -2 -1; 1 0 ]

6. Consider the two heat exchangers shown below:

Th(z=0) Th(z=1)

Tc

Tc

(a)

Th(z=0)

Th(z=1)

(b)

Tc(z=1)

Tc(z=0)

(a) In this configuration, a hydrocarbon liquid flowing through a r = 1cm (internal) radius heat
exchanger tube with length 1m. The fluid enters at a temperature of Th(z = 0) = 600K
and is cooled by a boiling liquid on the outside of the tube; the latter liquid’s boiling point
is Tc = 373K. We can model the hydrocarbon liquid temperature as a function of the tube
coordinate z with the single differential equation:

mhCph
dTh

dz
= 2πrh(Tc − Th)

where the heat transfer coefficient is given as h = 7500W/(m2 K), Cph = 2300J/(kg K), and
the mass flow rate of the hydrocarbon stream is mh = 0.1kg/s.

Using hand calculations, compute the hydrocarbon stream outlet temperature Th(z = 1);
compare your solution to that found by linearodesolver.m by plotting the results.

(b) Now consider the case where the same hydrocarbon stream passes through the same heat
exchanger tube, but now is cooled by a liquid flowing in the opposite direction (this is known
as a counter-current flow). If the coolant fluid enters at z = 1m and has Cpc = 4200J/(kg K),
exits the heat exchanger at z = 0 at Tc(z = 0) = 550K, and flows at rate of mc = 0.01kg/s,
we can model the new heat exchanger system by adding the new equation

−mcCpc
dTc

dz
= 2πrh(Th − Tc)
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For the case h = 300W/(m2 K) and mh = 0.005kg/s, compute the inlet coolant temperature
Tc(z = 1) and the outlet hydrocarbon stream temperature Th(z = 1) using lodesolver.m
(plot the results as a function of z). Note that you must use the new value of h in both
equations.

Compute the eigenvalues and discuss their physical significance.



Chapter 10

Case Study: Quenching dynamics

Consider a partially insulated tank with Vw m3 of water into which a steel sphere of volume Vs is dropped.
The tank walls are in contact with the laboratory’s environment kept at a cool Tl = 10oC). If the heat
transfer coefficient between the sphere and water is h J/(m2 s K), surface area of the sphere A m2,
heat capacity of steel and water is Cps and Cpw , respectively, and density of each is ρs and ρw , heat
transfer coefficient between the tank and laboratory air hc and heat transfer area Ac , the sphere and
water temperatures Ts and Tw are defined as the deviation from the lab air temperature, and defining

αs =
hA

ρsVsCps
αw =

hA

ρwVwCpw
αc =

hcAc

ρwVwCpw

we can write

dTs

dt
= αs(Tw − Ts) (10.1)

dTw

dt
= αw (Ts − Tw )− αcTw (10.2)

subject to the initial conditions:

Ts(t = 0) = 70K Tw (t = 0) = 10K.

The two modeling equations are written in matrix form,

d

dt
z =

d

dt

[
Ts

Tw

]
=

[
−αs αs

αw −αw − αc

]
z

For this example, we will consider a system consisting of a 10cm sphere dropped into 2 liters of water;
this corresponds to the parameter values listed in Fig. 10.1. The resulting numerical values for the model
coefficients are found to be

αs = 11.7 hr−1 αw = 2.7 hr−1 αc = 0.37 hr−1

It is straightforward to prove the only steady-state solution to (10.1)-(10.2), written as,[
−αs αs

αw −αw − αc

] [
Ts

Tw

]
= 0

is Ts = Tw = 0 for αc > 0.
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T
s

T
w

h
c

h

Parameter Value Units
ρw 998 kg/m3

ρs 7801 kg/m3

Cpw 4187 J/kg K
Cps 473 J/kg K
h 200 J/m2 s K
hc 10 J/m2 s K
Vs 5.236×10−4 m3

Vw 0.002 m3

A 0.0314 m2

Ac 0.085 m2

Figure 10.1: Water tank and steel sphere of the quenching dynamics problem.

10.1 Transient solution

If we now consider the problem of determining the solution to the full set of ODEs (10.1)-(10.2) subject
to the initial conditions (10), we can pose the solution as

z = eAtz0

With

A =

[
−11.7 11.7

2.7 −3.1

]
and recalling the quadratic form of the characteristic equation for 2×2 systems (9.10), we can immediately
compute the eigenvalues as

λ1,λ2 =
−14.8±

√
14.82 − 4(11.7(3.1)− 11.7(2.7))

2
= −0.32,−14.5

Writing out the eigenvalue problem for the quench modeling equations,[
−11.7− λ 11.7

2.7 −3.1− λ

]
u = 0

so

[
−11.38 11.7

2.7 −2.78

]
u1 = 0

so we see that a solution accurate to one decimal place for u1 is

u1 =

[
1

0.97

]
.

We note that this is one of an infinite number of solutions because u1 multiplied by any nonzero constant
also will be a solution. Notice how the values of both elements in this eigenvector are nearly equal;
because this eigenvector corresponds to the (much) smaller magnitude eigenvalue, we interpret this as an
indicator that the sphere and water temperature will be nearly equal (which is greater?) as the system
slowly relaxes to the laboratory room temperature.
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For the second eigenvalue we find [
2.8 11.7
2.7 11.4

]
u2 = 0

so a solution accurate to one decimal place is

u2 =

[
4.19
−1

]
.

10.2 Case αc = 0

For αc = 0 it appears there is no unique solution because of the linear dependence of each row of A.
This means a particular, steady-state solution for this model depends entirely on the initial conditions of
the problem, a characteristic of closed systems. Equilibrium solutions to open systems such as the flash
drum, on the other hand, normally will consist only of a finite number of solutions, and may depend on
initial conditions in the case of multistability for nonlinear systems.

One piece of information we have not explicitly made use of is found by adding the two differential
equations:

d

dt

[
Ts

αs
+

Tw

αw

]
= 0

αwTs + αsTw = δ (a constant)

αwTs + αsTw = αwTs(t = 0) + αsTw (t = 0)

Tw =
αwTs(t = 0) + αsTw (t = 0)

αs
− αwTs

αs
(10.3)

Substituting (10.3) into (10.1) gives

dTs

dt
= αwTs(t = 0) + αsTw (t = 0)− αwTs − αsTs

dTs

dt
= γTs + δ (10.4)

where γ = −αw −αs and so is always negative and has a magnitude that increases with decreasing steel
sphere total heat capacity (ρsVsCps).

10.2.1 Scalar ODE solution

The analysis leading to (10.4) indicates that (10.1)-(10.2) only has a single dynamic degree of freedom
when αc = 0. This linear, scalar, time-invariant ODE is solved easily by the variable transform approach
described earlier. With

y = γTs + δ

the particular solution is

y = y0eγt

γTs(t) + δ = [γTs(t = 0) + δ] eγt

Ts(t) = − δ
γ

+

[
Ts(t = 0) +

δ

γ

]
eγt



CHAPTER 10. CASE STUDY: QUENCHING DYNAMICS 111

This solution makes physical sense, because at t = 0 Ts = Ts(t = 0) and as t → ∞ αwTs + αsTs =
αwTs(t = 0) + αsTw (t = 0) which implies Ts = Tw and that energy is conserved.

10.2.2 Solution in the phase plane

When αc = 0,

0 = −αw − λ+
αsαw

αs + λ

= −(αs + λ)(αw + λ) + αsαw

= λ2 + (αs + αw )λαw

so λ1,2 = 0,−αs − αw .

Substituting the eigenvalues λi into the eigenvalue problem, we can determine the corresponding eigen-
vectors ui : [

−αs αs

αw −αw

]
u1 = 0

u1 = c1

[
1
1

]
corresponding to λ1 = 0[

αw αs

αw αs

]
u2 = 0

u2 = c2

[
1

−αw/αs

]
corresponding to λ2 = −αs − αw

The constants c1, c2 can be anything including zero: we can write the results in array form:

V =

[
1 1
1 −αw/αs

] [
c1 0
0 c2

]
= UC.

10.2.3 Physical interpretation of eigenvectors

We continue our practice of avoiding matrix inversion, and so actually solve the system

Ud = z0[
1 1
1 −αw/αs

]
d =

[
Ts(0)
Tw (0)

]
[

1 1
0 −αw/αs − 1

]
d =

[
Ts(0)

Tw (0)− Ts(0)

]

d =


αs(Tw (0)− Ts(0))

αs + αw
+ Ts(0)

−αs(Tw (0)− Ts(0))

αs + αw


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Figure 10.2: The geometry of the phase plane showing the decomposition of initial conditions (left)
and the time-evolution of the quenching problem, showing the convergence to points on the eigenvector
corresponding to the zero eigenvalue.

This gives a clear view into the modal structure of the particular solution, as shown in Fig. 10.2. For our
system, we write the solution out explicitly as[

Ts

Tw

]
=

[
αs(Tw (0)− Ts(0))

αs + αw
+ Ts(0)

] [
1
1

]
+

[
−αs(Tw (0)− Ts(0))

αs + αw

]
e−(αs+αw )t

[
1

−αw/αs

]
.

Notice how the zero eigenvalue means that solutions evolve parallel to the other (“nonzero”) eigenvector
and ultimately come to fall on the eigenvector associated with the zero eigenvalues. Inspection of the
coefficients of the ODE solution shows that

Ts , Tw →
[
αs(Tw (0)− Ts(0))

αs + αw
+ Ts(0)

]
as t →∞.

These results corroborate with our previous analysis of the steady-state, suggesting the vector d1u1 can
be thought of as the total energy of the system.



Chapter 11

Case Study: Isothermal CVD reactor
model

Microelectronic devices are manufactured in a sequence of processing steps that include numerous thin-
film deposition and etching operations. As one example, consider the reaction process where thin films
of polycrystalline silicon are deposited using a Chemical Vapor Deposition (CVD) system [21].

This process consists of a feed gas of silane (SiH4) fed to a vacuum chamber containing the wafer(s) to
be processed. The reaction process consists of the gas phase decomposition of silane to silylene

SiH4

Rg

−→ SiH2 + H2

where the gas phase reaction rate R1 is given by

Rg = kgCySiH4

has units mol/(m3 s). The actual Si film deposition is governed by the surface reaction:

SiH2

Rs

−→ Si + H2

where
Rs = ksCySiH2

and has units mol/(m2 s). We note that the gas phase reaction produces two moles of gas for each
consumed while the surface reaction produces one mole of gas for each consumed.

If we approximate the gas phase behavior of this system as an isothermal, well-mixed reactor with pure
silane feed (y f

SiH4
= 1) and for now assume the conversion rate of silane is low in this reactor (we will

check the validity of this assumption later), a material balance on each gas phase chemical species gives
the following nonlinear equations

CV
dySiH4

dt
= QC − (QC + kgCVySiH4 )ySiH4 − kgCVySiH4

CV
dySiH2

dt
= −(QC + kgCVySiH4 )ySiH2 − ksCWaySiH2 + kgCVySiH4

CV
dyH2

dt
= −(QC + kgCVySiH4 )yH2 + ksCWaySiH2 + kgCVySiH4
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Under the assumption of low silane conversion in our system (ySiH4 → 1 and ySiH2 , yH2 → 0), we can
replace the nonlinear terms in the modeling equations with the following linear approximations (the topic
of linearization will be discussed later in this text):

CV
dySiH4

dt
= QC − QCySiH4 − kgCV − 2kgCV (ySiH4 − 1)− kgCVySiH4

= −QCySiH4 − 3kgCVySiH4 + QC + kgCV (11.1)

CV
dySiH2

dt
= −QCySiH2 − kgCVySiH2 − ksCWaySiH2 + kgCVySiH4 (11.2)

CV
dyH2

dt
= −QCyH2 − kgCVyH2 + ksCWaySiH2 + kgCVySiH4 (11.3)

For operating conditions typical for low-pressure CVD of poly-Si (1 torr total pressure and 900K wafer
temperature) the reaction rate coefficients [21] and gas total concentration C computed using the ideal
gas law are

kg = 0.016 s−1

ks = 190 m/s

C = 0.0178 mol/m3

If we consider a reactor loaded with 20, 200mm wafers, and that the reactor is a tube 1m in length and
0.15m in radius, and that the feed gas flow to the reactor is pure silane at 100 sccm, the remaining model
parameters can be computed:

Q = 0.0042 m3/s

V = 0.0707 m3

Wa = 2× 20× 0.0314m2 = 1.2566 m2

The final form of the reactor model can be written in matrix form as

dy

dt
= Ay − b with y =

 ySiH4

ySiH2

yH2


with

A =

 −0.1071 0 0
0.016 −3378 0
0.016 3378 −0.0751

 b =

 −0.0751
0
0

 .

All coefficients have units s−1.

11.1 CVD deposition rate

The steady state solution is computed by setting the time-derivatives to zero and solving the resulting
linear system in the form of (4.1).

Using the constants listed, we can set up the coefficient array and vector of nonhomogeneous terms by
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A = zeros(3,3); b = zeros(3,1);

A(1,1) = -Q/V - 3*kg;

b(1,1) = -Q/V - kg

A(2,1) = kg;

A(2,2) = -Q/V - kg - ks*Wa/V;

A(3,1) = kg;

A(3,2) = ks*Wa/V;

A(3,3) = -Q/V - kg;

and compute the steady-state solution using

>> format short e

>> y = A\b

y =

7.0115e-01

3.3211e-06

2.9885e-01

We can determine the deposition rate using this solution by computing the rate of the deposition reaction
by solid silicon’s molar density ρ = 82920 mol/m3:

>>DepRate = ks*C*y(2)/82920 * 1e6 * 3600 % deposition rate in microns/hr

DepRate =

0.4881

which indicates that this wafer would have to be processed for over one hour to achieve a 0.5µm film,
which is a typical length scale for microelectronic devices.

11.2 CVD reactor dynamics

Using the coefficient array A and nonhomogeneous array b used for computing the steady-state solution
of the CVD problem, we can compute the solution to the dynamic problem using the spectral factorization
technique of the lodesolver.m method:

t = [0:1:60];

y0 = [0; 0; 1];

y = lodesolver(A,t,y0,b);

As can be seen in Fig. 11.1, even though SiH2 governs the overall deposition rate, very little exists in
the reactor at any time; the practical implication is that it would not be feasible to measure deposition
rate indirectly my measuring the gas phase concentration of this component. We see that the system,
started with a reactor filled with pure H2 at time t = 0, comes to equilibrium after about one minute of
operation.
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Figure 11.1: Dynamic behavior of the CVD reactor during the first minute of start-up operation.

11.3 Review problems

1. Rigorously argue that ySiH4 + ySiH2 + yH2 = 1 must always be satisfied in the poly-Si steady-state
modeling equations. Then, compute a representative solution and condition number for the linear
coefficient array and discuss any discrepancies between the computed and true sums.

2. Write a MATLAB program to compute the steady-state deposition rate (in µm/min) for the polySi
steady-state model. Use this program to compute deposition rates for 100 ≥ Q ≥ 5000sccm, in
increments of 100sccm plotting the deposition rate as a function of Q over this interval. Compare
this curve to the asymptotic deposition rate found as Q →∞.



Chapter 12

Nonlinear systems

This chapter focuses on developing numerical approaches to solving models in the form of sets of nonlinear
algebraic equations. These models result from descriptions of physical systems and are created in two
different ways:

1. physically based models derived from first-principles concepts, such as material or energy balances;

2. empirical models in the form of a Taylor’s series expansion in the model parameters, with model
coefficients determined by a parameter estimation technique using experimental data.

The models we consider can be written in the form

g(x) = 0

where the goal is to compute values of variable(s) x such that the equation(s) above is satisfied; we note
that for nonlinear systems, there may be more than one solution x that satisfies g(x) = 0. Modeling
problems such as these also are generated when steady state solutions are to be computed for differential
equation models of the form

dx

dt
= g(x).

12.1 The generic characteristics of a nonlinear AE model

Every nonlinear model has variables and parameters; the distinction is artificial and can be the source of
trouble in developing modular Newton approaches; however, for now we will retain the concept because
it is familiar to most engineers. As a generic nonlinear system, consider the following two independent
nonlinear equations containing variables x and y and parameters p and q:

g(x , y , p) = 0

f (x , y , q) = 0

The second key feature of nonlinear algebraic equation models are the modeling equations themselves.
For the systems we study, we consider there are to be at least as many equations and variables for the
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Figure 12.1: Multiple methods for viewing the solution to g(x) = ax − sin(x) = 0.

system. We note that because parameters can be defined in terms of a equation, we see the previously
noted artificiality of the distinction between parameters and variables. The modeling equations define
a residual - the degree of inaccuracy of each modeling equation as determined by the current variable
values.

12.2 Nonlinear model examples

Let us consider the nonlinear system

g(x) = ax − sin(x) = 0. (12.1)

We can view finding solutions to this problem in two different ways; the first is to re-write (12.1) as

g(x) = g1(x)− g2(x) = ax − sin(x)

and plot each function g1(x), g2(x) individually as a function of x to find the intersections of g1 and g2.
These intersections determine the solutions to (12.1). Plots for two different values of parameter a are
illustrated in Fig. 12.1.

Alternatively, we can plot (12.1) directly to determine the intersections with g = 0; one may argue
there is a slight disadvantage for this problem in that we lose some information that gives insight into
the “global” behavior or this system. For example, compared to the previous approach of plotting the
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Figure 12.2: Two views of the solutions to a set of nonlinear algebraic equations. Locations of two
solutions are indicated by intersection points of all three surfaces, where the red surface denotes z =
g(x , y), blue denotes z = f (x , y) and green denotes z = 0.

separate terms making up g(x), we can no longer visualize the interaction of these terms that gives rise
to a different number of solutions for different values of parameter a (see the lower plots of Fig. 12.1).

12.2.1 Multiple equation models

We also will consider systems of nonlinear equations, such as

f (x , y) = exp(x + y)− 2

g(x , y) = −x2 − y 2 + 2

where the sets of equations cannot be decoupled to reduce the system to a single variable and single
equation. Again, we can take a visual approach to understanding the solutions to this system of equations
by plotting z = the right-side of each as a function of the independent variables x and y . As seen in
Fig. 12.2, solutions to the set of equations require the simultaneous intersection of the f (x , y) and g(x , y)
together with the plane defined by z = 0; from the plots, we observe two potential solutions, one at
(x , y) ≈ (−0.59, 1.28) and the other at (x , y) ≈ (1.28,−0.59). The symmetry of the solutions is not
surprising considering the interchangeability of x and y in the modeling equations.

If we modify g slightly to be
g(x , y) = −x2 − y 2 + b

we can imagine that as we reduce the value of b from 2, the red, dome-shaped surface defined by this
equation will sink into the green z = 0 plane, and will eventially lose contact with f resulting in no real
solutions to this problem. Visually, we find this value to be approximately b = 0.25; for b less than this
value, there appear to be no solutions to the problem.
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12.3 Newton’s method

Consider the problem of finding solution(s) to

g(x ; p) = 0

We now solve for solutions xs using the iterative Newton’s method for a specified set of parameters p. If
x0 is our guess for a solution, a more refined solution x1 can be computed using the Taylor’s series of g
evaluated at the current solution estimate x0:

g(x1) ≈ g(x0) +
dg

dx

∣∣∣∣
x0

(x1 − x0) +
1

2!

d2g

dx2

∣∣∣∣
x0

(x1 − x0)2 + h.o.t.

where h.o.t. refers to order three and higher derivative terms. To compute the more refined solution
estimate x1, a linear curve gL(x) tangent to g(x) at the current solution estimate g(x0) is defined from
the Taylor’s series expansion by

gL(x) = g(x0) +
dg

dx

∣∣∣∣
x0

(x − x0).

We see that gL(x) is a linear approximation to the true g(x), but one that can be solved explicitly for
the value of x where the function crosses zero; therefore, setting the right side of the equation above
equal to zero and solving for the corresponding x = x1 gives

x1 = x0 − g(x0)

dg/dx |x0

with
dg

dx
= a− cos(x) (12.2)

for example (12.1). It is interesting to observe that because (12.2) is positive for all parameter values
a > 1, the problem g(x) = 0 must have a unique solution under these conditions.

Produced by this computation is a (hopefully) better estimate x1 of a true solution to g(x) = 0; the
word hopefully is used because the actual convergence behavior of the Newton procedure can be difficult
to predict. We can continue to refine the solution estimate by replacing the previous estimate x0 with
the newer estimate x1 and then repeating the procedure until a sufficiently accurate solution is reached.

12.3.1 Quadratic convergence - numerical analysis

The convergence of Newton’s method for solving g(x) = 0 (for cases where the first g ′ and second g ′′

derivatives do not vanish and for sufficiently-good initial guesses) is said to be quadratic: if x = r is the
numerical value of the root we are attempting to find, in the neighborhood of x = r with ε = x − r ,

g(x) ≈ g(r) + (x − r)g ′(r) +
1

2
(x − r)2g ′′(r)

= 0 + εg ′(r) +
1

2
ε2g ′′(r)

Differentiating each term of the right side of the equation above with respect to x (i.e., with respect to
ε) gives

g ′(x) = g ′(r) + εg ′′(r).
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Thus we can analyze our Newton scheme to find

x1 = x0 − g(x0)

g ′(x0)

x1 − r = x0 − r − g(x0)

g ′(x0)

ε1 = ε0 −
ε0g ′(r) + 1

2 (ε0)2g ′′(r)

g ′(r) + ε0g ′′(r)

=
ε0g ′(r) + (ε0)2g ′′(r)− ε0g ′(r)− 1

2 (ε0)2g ′′(r)

g ′(r) + ε0g ′′(r)

=
1
2 (ε0)2g ′′(r)

g ′(r) + ε0g ′′(r)

so for sufficiently small ε0,

ε1 ≈ (ε0)2 g ′′(r)

2g ′(r)
= C (ε0)2.

Thus, we see that after six iterations, the error becomes

ε6 = ε0
(
Cε0

)63

which normally will be sufficiently accurate if |Cε0| < 1 because, for example, if |Cε0| = 0.5

ε6 = 0.5 (0.5)63 = 5.4× 10−20

which is less than round-off error. It is important to point out, however, that choosing initial guesses
based on |Cε0| < 1 do not necessarily have to converge to the fixed points used to calculate the values
of C .

The analysis above illustrates the quadratic convergence behavior of the Newton method when the
estimate of the solution approaches the true value. Because the next value of the error ε1 is proportional
to the square of the previous error ε0, the accuracy of the solution estimates improves with each iteration
in such a way that the number of accurate digits doubles with each iteration, i.e., if ε0 = 0.001, then
ε1 = 0.00001 in the neighborhood of the converged solution. We note that explicit computation of g ′

and g ′′ may be used to gain further insight into the true accuracy of the solution.
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Casting the Newton procedure in terms of updates

u1 = − g(x0)

g ′(x0)

= − (x0 − r)g ′ + (1/2)(x0 − r)2g ′′

g ′ + (x0 − r)g ′′

u2 = − g(x1)

g ′(x1)

= − g(x0 + u1)

g ′(x0 + u1)

= − (x0 + u1 − r)g ′ + (1/2)(x0 + u1 − r)2g ′′

g ′ + (x0 + u1 − r)g ′′

= − (x0 − r)g ′ + (1/2)(x0 − r)2g ′′ + u1g ′ + (1/2)[(u1)2 + 2u1(x0 − r)]g ′′

g ′ + (x0 + u1 − r)g ′′

= −−u1[g ′ + (x0 − r)g ′′] + u1g ′ + (1/2)[(u1)2 + 2u1(x0 − r)]g ′′

g ′ + (x0 + u1 − r)g ′′

= − (1/2)(u1)2g ′′

g ′ + (x0 + u1 − r)g ′′

≈ − g ′′

2g ′
(u1)2 because x0 + u1 − r = x1 − r = small.

Because this analysis was done in the neighborhood of the true solution point r , we see that convergence
of u to zero implies convergence of x to r , and that the (negative!) exponent of the update will double
during each iteration. This is demonstrated in the following computational example.

12.3.2 Computational example: Quadratic convergence of Newton’s method

We consider the MATLAB script written to solve the single-equation model problem (12.1)

% Newton procedure for g = ax-sin(x)

a = 0.5;

x = 1.5; % initial solution estimate

for iters = 1:6

g = a*x - sin(x);

dg = a - cos(x);

update = -g/dg;

x = x + update;

end

Given an initial guess of x0 = 1.5, the updates converge with the following behavior to the solution
x = 1.8955 for a = 0.5
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Figure 12.3: Convergence of the Newton scheme.

Iteration i Update x i

0 - 1.5
1 5.7656e-01 2.0766
2 -1.6605e-01 1.9105
3 -1.4885e-02 1.8956
4 -1.2773e-04 1.8955
5 -9.4388e-09 1.8955
6 -2.7111e-16 1.8955

and so the exponent of the update indeed approximately doubles during each iteration as the algorithm
approaches the true solution (note that the update does now go below 1× 10−16 in magnitude because
this value is approximately machine roundoff). A graphical view of the Newton iterations is shown in
Fig. 12.3, where the blue-line segments are plots of the linear function f (x) while the green dashed curve
is g(x).

Before concluding this section, several important general points on the Newton method must be made:

• The numerical technique will not converge when the derivative vanishes at the root;

• The solution computed can depend strongly on the initial guess: this is particularly true for problems
that have multiple solutions.
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12.4 Multiple equations: The Newton-Raphson method

Returning to our representative set of nonlinear algebraic equations

h(z) =

[
f (x , y)
g(x , y)

]
=

[
exp(x + y)− 2
−x2 − y 2 + b

]
(12.3)

we wish to find solutions to the problem written in vector form

0 = h(z) with z =

[
x
y

]
and

h1(x , y) = exp(x + y)− 2

h2(x , y) = −x2 − y 2 + b

We can write the Taylor’s series expansion of h at (x0, y 0) as

h1(x , y) ≈ h1(x0, y 0) +
∂h1

∂x

∣∣∣∣
x0,y0

(x − x0) +
∂h1

∂y

∣∣∣∣
x0,y0

(y − y 0) +
∂2h1

∂x∂y

∣∣∣∣
x0,y0

(x − x0)(y − y 0) + ...

h2(x , y) ≈ h2(x0, y 0) +
∂h2

∂x

∣∣∣∣
x0,y0

(x − x0) +
∂h2

∂y

∣∣∣∣
x0,y0

(y − y 0) +
∂2h2

∂x∂y

∣∣∣∣
x0,y0

(x − x0)(y − y 0) + ...

or, neglecting the second and higher-order terms

h(z) ≈ h(z0) + J(z− z0). (12.4)

For the representative model, the Jacobian matrix J is found to be

J =

[
J1,1 J1,2

J2,1 J2,2

]
=

 exp(x + y) exp(x + y)

−2x −2y

 .

This gives us the Newton-Raphson procedure,

z1 = z0 − J−1h(z0). (12.5)

Of course, we do not actually invert the Jacobian J; instead, we use the Gaussian elimination (or similar)
procedure described in the linear systems chapter to solve

J0u1 = −h(z0) with u1 = z1 − z0

for the update vector u, which is used to compute the refined solution estimate z1 from

z1 = z0 + u1.

12.4.1 Computational example: The Newton-Raphson method

We now consider solving the two-equation model problem for a = 2 using a Newton-Raphson technique
to observe the convergence behavior using the following MATLAB script:
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% Newton-Raphson procedure applied to the 2-equation model problem

x = 2; y = 1; % initial solution guess

b = 2;

for iters = 1:8

h1 = exp(x+y) - 2;

h2 = - x^2 - y^2 + b;

J11 = exp(x+y);

J12 = exp(x+y);

J21 = -2*x;

J22 = -2*y;

h = [h1; h2];

J = [J11 J12; J21 J22];

update = -J\h;

normup = sqrt(update’*update);

x = x + update(1);

y = y + update(2);

end

For this case we compute the length (2-norm) of the update, and again observe the quadratic convergence
in the neighborhood of the solution x = 1.2846 and y = −0.5914; we note that the solution procedure
makes several large initial updates that do not follow the quadratic convergence pattern:

Iteration i || Update || x i y i

0 - 2 1
1 6.7082e-01 1.4004 0.6991
2 1.2630e+00 1.8323 -0.4877
3 4.4572e-01 1.3879 -0.5220
4 1.1445e-01 1.2925 -0.5853
5 9.9704e-03 1.2847 -0.5914
6 7.0877e-05 1.2846 -0.5914
7 3.5112e-09 1.2846 -0.5914
8 9.5674e-17 1.2846 -0.5914

12.4.2 Jacobian arrays by finite differences

We can compute approximate values of the derivatives needing for Newton’s method with finite differ-
ences: if δ is a small number (but significantly larger than the machine roundoff error), g is a vector of
nonlinear equations, and z is the vector of variables, for centered finite differences

∂gi

∂zj

∣∣∣∣
z0

≈
gi (z0

j + δ)− gi (z0
j − δ)

2δ

and for forward differences
∂gi

∂zj

∣∣∣∣
z0

≈
gi (z0

j + δ)− gi (z0
j )

δ
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The Jacobian array can be constructed using either of these approaches

J|z0 =

[
∂g

∂z1

∂g

∂z2
· · ·
]

Selection of perturbation size

The perturbation δ used in the forward finite difference calculation actually varies according to the
magnitude of the variable zj to which the variation of the residuals are being computed; following [18]:

δj =
√
εmax [|zj |, 1]

where ε corresponds to machine epsilon (round-off error), found using the MATLAB eps.m function.

12.4.3 Our basic Newton-Raphson function

function [z,conflag,J,r] = nr(z0,p,rfun,Jfun)

% NR A general Newton-Raphson method. Called as

% [z,conflag] = nr(z0,p,rfun,Jfun)

% where z0 is the initial guess in column format, p is a vector of

% parameters, rfun the residual function and Jfun the Jacobian function.

% Note that Jfun is computed by finite differences if not specified in

% the input parameter list. Also note that rFun and Jfun take standard

% MATLAB format: rfun(t,z,p) and Jfun(t,z,p) where an empty array [] is

% passed for t.

t = NaN; % dummy value

z = z0; small = sqrt(eps); conflag = 0;

if nargin == 1, p = []; end

for iters = 1:20

r = rfun(t,z,p);

if nargin <= 3

J = numJ(z,p,rfun);

else

J = Jfun(t,z,p);

end

update = -J\r;

z = z+update;

normup = sqrt(update’*update);

if normup <= small % converged solution

conflag = 1; disp([’iterations to convergence: ’,num2str(iters)])

break

end

end
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function J = numJ(x,p,rfun)

% compute the Jacobian array by forward finite differences

t = NaN; % dummy parameter

m = length(x);

delt = sqrt(eps);

for i = 1:m

xp = x;

xp(i,1) = xp(i,1)+delt;

rp = rfun(t,xp,p);

r = rfun(t,x,p);

J(:,i) = (rp-r)/delt;

end

Note that the function to be called takes the format used by MATLAB’s built-in ODE solvers:

residual = funname(t,x,p)

where t is a dummy parameter. The Newton-Raphson function then is typically called in the following
manner

>> f = @funname;

>> [x,conflag] = nr(f,x0,p);

>> if conflag, disp(’Converged solution, x = ’), end

>> disp(x)

12.4.4 Jacobian-free formulations

The Newton-Raphson update can be computed using

uM×1 = −
[
JM×M]−1

gM×1

and is used to refine an estimate of the solution zM×1:

z1 = z0 + u

If V is an orthonormal basis for u, we can write the update as

uM×1 = VM×NyN×1 N ≤ M

and so computing the update in the Newton-Raphson procedure becomes

JM×MVM×NyN×1 = −gM×1

We can solve for y using a least-squares (a Galerkin projction) procedure:

VT [JV]y = −VTg

y = −
(
VT [JV]

)−1
VTg

where the array [JV] defined by the product of the Jacobian array J and each (column) basis vector Vi

is computed using the finite-difference approximation

JVi =
g(z0 + δVi )− g(z0)

δ

and so avoids explicit computation and storage of the Jacobian elements.
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Recovering eigenvalues of J

One potential disadvantage to using the Jacobian-free formulations is that because J is not available, we
cannot assess the linear stability characteristics of the system by simply computing the eigenvalues of J.
However, we can examine the relationship between JV and the eigenvalue problem

Jv = λv (12.6)

by considering yN×1 to be the linear combination of the columns of V that generates an eigenvector v
satisfying (12.6). Therefore,

Jv = λv

JVy = λVy

VTJVy = VTλVy

Wy = λIy.

This means we can compute N of the M eigenvalues of J as the eigenvalues λn of the N ×N matrix W
and recover the eigenvectors vn of J corresponding to these eigenvalues from vn = Vyn. The question
now becomes how one chooses the matrix V so that its vectors span the same space as the eigenvectors
most relevant to the stability analysis of the system (generally, the slowest modes).

12.4.5 Krylov subspace methods

The residual for the linear equation is
r = g + Ju

so for u = 0
r0 = g.

The Krylov subspace is defined as the space spanned by the (column) vectors

K =
[
g, Jg, JJg, (J)3g, · · · , Ki , · · ·

]
where

Ki =
g(z + δKi−1)− g(z)

δ
i > 1

and
K = VΣVT

where we retain only those vectors Vi that correspond to significant singular values σi .

This leaves the question: why is K a good basis for representing the update? If we return to the linear
system

Ju + g = 0

and write the residual as
r = Ju + g

choosing u = 0 gives the residual
r0 = g
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and so if our goal is to choose a set of basis functions to represent u that are the same as the test
functions used in a Galerkin procedure to solve the linear system, the first basis function should be

K1 = g

because we are guaranteed that g will be a component in the residual. So now, our assumed solution is

u = 0 + a1K1 = 0 + a1g

so the resulting residual is
r1 = a1Jg + g

and so it makes sense to choose K2 = Jg, because the residual will be some linear combination of g and
Jg. Continuing this line of thinking gives

u = 0 + a1g + a2Jg

so
r3 = a2J2g + a1Jg + g

and so we see why
K = [g, Jg, J2g, J3g, · · · ]

is a good basis for the solution procedure.

12.5 The naemodel class

The naemodel.m class constructor is used to define the parameters and variables of the model and to
set up intial approximations to the solution - the initial guess for the Newton procedure. In this class,
the rhs.m method returns a double or cell array containing the current value of the residual. The
jacobian.m method returns the Jacobian array for the problem, computed using finite differences, and
the newton.m method performs the Newton iterations for the problem, determining a search direction
using the Jacobian array and then performing a linesearch to determine an update the reduces the residual
norm.

naemodel
var : assocarray
param : assocarray
rhsname : char
plotflag, nmax, lsmax, jup, nkvec : double
display(A)
jacobian(A)
naemodel(var,param,rhsname,plotflag,nmax,lsmax,jup
newton(A,Abar,biffparam,ds)
param2var(A,key,newval)
predictor(A,biffparam,ds,dvds)
sensitivity(A,Aparamkey)
residual(A)
rhs(A)
unpack(A)
var2param(A,key,newval)
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The simplest way to use the naemodel class is to create an modeling object (a module) by calling the
naemodel.m constructor directly, using the name of a MATLAB function that returns the “right-hand
side” of the modeling equations as one of the input parameters to the constructor. The form of this
function should be that of the standard “odefun” type function used when calling MATLAB numerical
integrators.

One can also build more specialized modules by deriving a new class from naemodel, i.e., for the
naetemplate class provided with the mdpsas software library,

1. we create the directory naetemplate;

2. define the constructor method naetemplate.m in such a way that the new class derives from the
naemodel class;

3. create a new rhs.m and possibly residual.m method to overload the default methods;

4. create an instance of the new class to initialize the state of the modeling object; at the outset this
operation corresponds to setting the variable values to the initial guesses for the Newton procedure
and setting the parameter values;

5. and apply the inherited newton.m method to solve the problem.

To see these steps in action, we examine the naetemplate.m constructor method

function P = naetemplate

% naetemplate.m A nonlinear equation model object constructor, derived

% from the naemodel class.

var = assocarray({’x’ 2 ’y’ 1});

param = assocarray({’b’ 2});

A = naemodel(var,param);

P = class(struct([]),’naetemplate’,A);

In the rhs.m method, the “right-hand sides” of the modeling equations are defined; in computing the
steady-state solutions, these equations define the residual values that are to be driven to zero. Inside
the rhs.m method, the variables and parameter values are unpacked from the modeling object and are
placed in the workspace of the rhs.m function. The residual functions then are evaluated and the residual
values, stored as a MATLAB double or cell array, are returned:

function r = rhs(A)

% rhs.m Returns the right-hand side values of the modeling

% equations corresponding to naemodel object A

%

% INPUT/OUTPUT PARAMETERS

% A : an object derived from the naemodel class

unpack(A)

r{1} = exp(x+y) - 2;

r{2} = - x^2 - y^2 + b;
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And now we interactively solve the problem in a MATLAB session by instantiating naetemplate object
A with the variable state corresponding to the initial solution estimate:

>> A = naetemplate

A = naetemplate

naetemplate object "A"

Variables

---------

x : 2

y : 1

Parameters

----------

b : 2

and now the Newton-Raphson method of the naemodel class is used to compute one of the actual
solutions:

>> A = newton(A)

Update/residual norm = 1.5348 / 1.6087

Update/residual norm = 0.99912 / 0.43382

Update/residual norm = 0.17198 / 0.039344

Update/residual norm = 0.012998 / 0.0015958

Update/residual norm = 0.00053224 / 7.2802e-05

Update/residual norm = 2.4271e-05 / 3.306e-06

Update/residual norm = 1.1022e-06 / 1.5016e-07

Update/residual norm = 5.0062e-08 / 6.8202e-09

Update/residual norm = 2.2738e-09 / 3.0977e-10

Update/residual norm = 1.0328e-10 / 1.407e-11

This example shows that the finite difference-based Newton-Raphson method of the naemodel class
works effectively at computing the same solution found using the Newton procedure with the explicitly
defined Jacobian array, although at a slightly reduced convergence rate.

At this point, the modeling object A has stored in its var field the assocarray object containing the
variable values corresponding to the converged solution. We can view the solution values using the
naemodel/display.m method:

>> A

naetemplate object "A"

Variables

---------

x : 1.2846

y : -0.59145

Parameters

----------

b : 2
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We can unpack the parameters and variables from the converged model object, placing copies in the
current workspace:

>> unpack(A)

>> who

Your variables are:

A b x y

12.6 Sensitivity analysis

Given the set of nonlinear equations and a single parameter p

h(z, p) = 0 at z = z̄

and a solution z̄(p̄) for p = p̄, we define the sensitivity of the solution z̄ to p as

S(p̄) =
d z̄

dp

∣∣∣∣
p̄

= [J(z̄, p̄)]−1 ∂h

∂p

∣∣∣∣
p̄

Physically, the sensitivity translates into the rate of change of each state variable of the solution with
respect to that parameter, in other words

z̄(p̄ + 1) ≈ z̄(p̄) + S(p̄)

We demonstrate the use of sensitivity.m by computing S for the converged model object A:

>> S = sensitivity(A,’b’)

naetemplate object "S"

Variables

---------

x : 0.26652

y : -0.26652

Parameters

----------

b : 2

and so the approximate solution for b = 3 is computed using the A and S moduels:

>> xnew = get(A,’var’,’x’) + get(S,’var’,’x’)

xnew =

1.5511

>> Ynew = get(A,’var’,’y’) + get(S,’var’,’y’)

Ynew =

-0.8580

and so now we compare this solution estimate to the actual solution corresponding to b = 3:
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>> A = set(A,’param’,3,’b’);

>> A = newton(A)

Update/residual norm = 0.3205 / 0.046952

...

Update/residual norm = 2.94e-13 / 4.2188e-14

naetemplate object "A"

Variables

---------

x : 1.5213

y : -0.82811

Parameters

----------

b : 3

We conclude that the approximate and true solutions match reasonably well, especially given the linear
nature of the approximation. We will find the sensitivity analysis a valuable tool for process optimization
and analysis, and as a basis for the continuation procedures described next.

12.7 Continuation

Let us say that we have already determined a solution x̄ , ȳ to (12.3) for some value of the parameter p̄.
If we now must compute a solution for another, relatively close value of p, we might consider computing
a solution to

H(z) =

[
h(z)
‖z− z̄‖2

]
−
[

0
δ2
s

]
= 0 with z =

 x
y
b

 . (12.7)

Note how b has shifted its status from that of a parameter to a variable. We can compute solutions to
(12.7) with our Newton-Raphson method (12.5):

z1 = z0 − [Jc]−1 H
(
z0
)

.

The Jacobian elements are found to be

Jc =

 J0
1,1 J0

1,2 P0
1

J0
2,1 J0

2,2 P0
2

2(x0 − x̄) 2(y 0 − ȳ) 2(b0 − b̄)

 . (12.8)

with

Pi =
∂hi

∂b
.

There are at least two solutions to this set of equations, so we need to help out our algorithm with a
good initial guess – that will be provided by a predictor step

z0 = z̄ + δs
dz

ds

∣∣∣∣
z̄

. (12.9)
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Figure 12.4: Numerical continuation of a solution to a nonlinear problem, illustrating the multiple solutions
that exist corresponding to each direction of the arc.

The derivatives of z are found by differentiating (12.7) with respect to s to give:

K(dz/ds) = Jp

[
dz

ds

]
−

 0
0

2δs

 = 0

with

Jp =

 J̄1,1 J̄1,2 P̄1

J̄2,1 J̄2,2 P̄2

2(x0 − x̄) 2(y 0 − ȳ) 2(b0 − b̄)


and, by using (12.9):

=

[
...

2δs [dx/ds] 2δs [dy/ds] 2δs [db/ds]

]
.

Because this gives us a nonlinear set of equations for the derivatives, we linearize the system as part of
the Newton procedure:

K0 + Jp

[
dz

ds

∣∣∣∣1 − dz

ds

∣∣∣∣0
]

= 0

12.7.1 Computational example: Solutions by continuation

Continuing with the two-equation nonlinear model, we start the algorithm at b = 3. A small, negative
change in b will have the opposite effect of the sensitivity we have already computed, therefore we
anticipate the solution will change in the following approximate manner initially for a negative δs :

dx

ds
= −0.25

dy

ds
= 0.25

db

ds
= −0.6.

The initial state of the naetemplate object is used to compute the correct derivatives for the predictor
step (12.9). The results of the predictor step then are used in the corrector step:

f(z0) + Jc
0(z1 − z0) = 0.
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Figure 12.5: Solutions x and y as a function of b computed using a predictor-corrector continuation
method.

using the Jacobian defined in (12.8). The MATLAB script to compute a vector of naemodel-derived
objects is as follows:

ds = -0.15;

bifparam = ’b’;

for i = 2:40

if i == 2

[Apred(i),dvds] = predictor(A(i-1),bifparam,ds);

else

[Apred(i),dvds] = predictor(A(i-1),bifparam,ds,dvds);

end

A(i) = newton(Apred(i),A(i-1),bifparam,ds); % the corrector step

end

Note that in prediction steps subsequent to the first that the previous derivatives are used to improve
the speed of convergence of the predictor step. The results are plotted by extracting the parameter
and corresponding solution values from the vector of naetemplate objects as shown below; results are
plotted in Fig. 12.5 where the ability of the continuation algorithm to follow solution arcs around turning
points is demonstrated.

bval = get(A(1),’param’,bifparam);

xval = get(A(1),’var’,’x’);

yval = get(A(1),’var’,’y’);

for i = 2:length(A)

bval(i) = get(A(i),’param’,bifparam);

xval(i) = get(A(i),’var’,’x’);

yval(i) = get(A(i),’var’,’y’);

end

Note how the location of the turning point matches our “visual” observations made at the beginning of
this chapter.
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12.8 Review problems

1. Consider the problem of determining the roots of the function 20 = 1+2x +3x2. For this homework
problem, write a function that

(a) plots the values of
f (x) = −19 + 2x + 3x2

versus x over a specific interval A ≤ x ≤ B using a total of N points inside this interval; be
sure to put a grid on the plot;

(b) calling the grid points of this interval xn, n = 1, ..., N, add a Newton procedure to the function
in which a solution to f (x) = 0 is computed using each of the xn as an initial guess to the
Newton procedure;

(c) plot the converged solution values as a function of the initial guess values xn in this interval;
report how many of the xn converged to any valid solution (even if they are outside the
interval).

(d) write your function so that the input parameter list to the function consists of A, B, and N;

(e) test your function for the cases

A=0, B=1, N=10

A=0, B=10, N=100

A=-3, B=5, N=1000

A=-3, B=5, N=10000

A=30, B=5, N=100

2. Recall how the heat capacity for many materials can be approximated by the polynomial curve fit

Cp(T ) = a + bT + cT 2 + dT 3

where T is given in oC and Cp in J/mol/K. Data for several chemical compounds are given below;
these curve fits are valid over the temperature range 0-1200o C

Substance a b c d
acetone 71.96 20.10× 10−2 −12.78× 10−5 34.76× 10−9

air 28.94 0.4147× 10−2 0.3191× 10−5 −1.965× 10−9
methane 34.31 5.496× 10−2 0.3661× 10−5 −11.00× 10−9

Given that the total amount of energy Q needed to raise one mole of each of these substances
from T0 to T1 is

Q =

∫ T 1

T0

Cp(T ) dT

(a) Integrate the equation above by hand and write a MATLAB function that takes as input the
coefficients a, b, c , and d , the initial temperature T0, and the value of Q and computes the
corresponding final temperature T1 using a Newton procedure.

(b) Given T0 = 20 C and Q = 10, 000 J/mol, compute the corresponding value for T1 for each
substance.
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3. Write a MATLAB script to find solutions to the model problem

f (x , y) = exp(x + y)− 2

g(x , y) = −x2 − y 2 + b

using a Newton-Raphson technique where elements of the Jacobian array are computed using
centered finite differences with a step size δ = 1 × 10−6; compute the value of both solutions for
b = 1.5.

4. Solve the 8-equation, 7-unknown flash drum material balance below subject to zM = 0.1 and
zO = 0.9 directly using a Newton-Raphson method.

xM + xO = 1

yM = 220xM

yO = 0.5xO

yM + yO = 1

V + L = F

yMV + xML = zMF

zMF = 10

yOV + xOL = zOF

Prove your computed solution is a true solution to the modeling equations; is this an over-
determined (least-squares) system, or is there a redundant equation?



Chapter 13

Case Study: A CVD reactor thermal
dynamics model

Microelectronic devices are manufactured in a sequence of processing steps that include numerous thin-
film deposition and etching operations. As one example, consider the reaction process where thin films
of tungsten are deposited using a Chemical Vapor Deposition (CVD) system [21].

Figure 13.1: A two-chamber ULVAC tungsten CVD cluster tool.

138
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Figure 13.2: A schematic diagram of one of the ULVAC single-wafer cross flow chemical vapor deposition
reaction chambers (bottom).

Wafer temperature control is critical to producing uniform films across the wafer as well as from wafer-to-
wafer. To illustrate representative issues in reactor modeling, we develop a lumped dynamic wafer thermal
model. Reactor gas phase temperature is assumed to be at quasi steady-state with respect to the wafer
and showerhead thermal dynamics, with a further simplification in that we assume a linear temperature
profile from the wafer to the cooled reactor wall. We develop a model describing the dynamics of the
wafer temperature Tw and showerhead window temperature Tq under the following assumptions:

1. Wafer temperature Tw does not vary with z (thin wafer assumption); and for now we neglect any
radial variations in temperature;

2. The process operates at sufficiently low deposition rates so that the contribution of heat of chemical
reaction is negligible compared to the radiation emitted from the wafer and absorbed from the
heating lamps; and

3. Radiation is emitted from both wafer sides and the wafer edge to a blackbody enclosure (the RTP
chamber) maintained at Ta in this cold-walled process.

4. The wafer diameter is small compared to the quartz window, and so heat transfer by gas phase
thermal conduction between the wafer and quartz window is considered important to the former,
minor for the latter.
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Table 13.1: Physical constant table (top) and RTP furnace design parameters (bottom).

Parameter Value Description
ρw 2330 kg/m3 Si density

Cpw 2300 J/(kg K) Si heat capacity
εw 0.7 Si emissivity
ρq 2200 kg/m3 quartz density

Cpq 660 J/(kg K) quartz heat capacity
εq 0.5 quartz emissivity (high temperature)
a 0.01 quartz absorptivity
εs 0.07 steel emissivity (room temperature)
σ 5.670×10−8J/(K4 m2 s) Stefan-Boltzmann constant

Ta 300 K ambient temperature
k 0.3 W/(m K) H2gas thermal conductivity
h 300 W/m2 showerhead/cooling gas heat transfer coeff
R 0.076 m wafer radius
L 0.05 m nominal wafer/quartz window distance
Q 2500 W/m2 lamp radiation flux
δw 0.0005 m wafer thickness
δq 0.01 m quartz window thickness

δw
dρwCpwT ∗w

dt
accumulation of wafer thermal energy

= σF εw εq(T ∗4q − T ∗4w ) wafer/showerhead radiation

+σ(1− F )εsεq(T 4
a − T ∗4w ) wafer top/chamber heat transfer

+σεqεs(T 4
a − T ∗4w ) wafer bottom/chamber heat transfer

+
k

L
(T ∗q − T ∗w ) wafer/showerhead gas phase conduction

+(1− a)Qu lamp heating of wafer

δq
dρqCpqT ∗q

dt
accumulation of showerhead thermal energy

= σF εw εq(T ∗4w − T ∗4q ) showerhead/wafer radiation

+σ(1− F )εsεq(T 4
a − T ∗4q ) showerhead/chamber heat transfer

+h(Ta − T ∗q ) showerhead coolant gas

+aQu lamp heating of showerhead

with the configuration factor given as

F =
2 + α2 −

√
(2 + α2)2 − 4

2

and α = L/R. The dimensionless quantity u ∈ [0, 1] represents the percentage of full lamp power.
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Table 13.2: Definition and numerical values of parameters in the CVD reactor model.

Parameter Definition Numerical value
εqw τσεw εqT 4

a /ρwCpwδw 0.06

εsw τσεw εsT 4
a /ρwCpwδw 0.0084

κw τk/RρwCpwδw 0.0015

qw τ(1− a)Q/ρwCpwδw 0.75

εwq τσεw εqT 4
a /ρqCpqδq 0.011

εsq τσεsεqT 4
a /ρqCpqδq 0.0011

νq τh/ρqCpqδq 0.021

qq τaQ/ρqCpqδq 0.034

α L/R 0.66

F 0.52

Defining the dimensionless temperature T and time t as

T =
T ∗

Ta
t =

t∗

τ

and assuming Cpw , ρw , Cpq, and ρq are not functions of temperature (a poor assumption, but necessary
to keep the modeling equations as simple as possible), we obtain

dTw

dt
= εqwF (T 4

q − T 4
w ) + εsw (2− F )(1− T 4

w ) +
κw
α

(Tq − Tw ) + qwu (13.1)

dTq

dt
= εwq F (T 4

w − T 4
q ) + εsq(1− F )(1− T 4

q ) + νq(1− Tq) + qqu (13.2)

13.1 Steady-state solution using Newton’s method

At steady state
dTw

dt
=

dTq

dt
= 0

and u(t) = constant giving a set of two nonlinear algebraic equations to solve for the steady state
showerhead and wafer temperatures. Consider the simplifying case where Tq is known and is fixed in
time; the problem reduces to finding the steady-state solutions to

g(Tw ) = εqwF (T 4
q − T 4

w ) + εsw (2− F )(1− T 4
w ) +

κw
α

(Tq − Tw ) + qwu = 0 (13.3)
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We now solve for solutions to g(Tw ) = 0 using the iterative Newton’s method for a specified set of Tq

and other parameters. If T 0
w is our guess for a solution, a more refined solution T 1

w

T 1
w = T 0

w −
g(T 0

w )

dg/dTw |T 0
w

with
dg

dTw
= −4εqwFT 3

w − 4εsw (2− F )T 3
w −

κw
α

(13.4)

for this example. It is interesting to observe that because (13.4) is negative for all parameter values, the
problem g(Tw ) = 0 must have a unique solution.

We consider the following portion of a MATLAB script written to solve the single-equation version of the
simplified CVD thermal dynamics problem (13.3)

% single equation newton procedure applied the the CVD reactor

% wafer energy balance

model_param_script % set dimensionless parameter values for this model

Tq = 2; % fix value of Tq to 600K

Tw = 4; % initial solution guess

for iters = 1:8

g = e_wq*F*(Tq^4-Tw^4) + e_ws*(2-F)*(1-Tw^4) ...

+ k_w/alf*(Tq-Tw) + q_w*u;

dg = -4*e_wq*F*Tw^3 - 4*e_ws*(2-F)*Tw^3 - k_w/alf;

update = -g/dg

Tw = Tw + update;

end

Given an initial guess of T 0
w = 4, the updates converge with the following behavior to the solution

Tw = 2.3160 (695K) for u = 1 (full lamp power)

Iteration i Update T i
w

0 - 4
1 -8.8777e-01 3.1122
2 -5.3955e-01 2.5727
3 -2.2076e-01 2.3519
4 -3.5076e-02 2.3168
5 -8.1187e-04 2.3160
6 -4.2666e-07 2.3160
7 -1.1770e-13 2.3160
8 5.0929e-17 2.3160
9 5.0929e-17 2.3160

and so the exponent of the update indeed nearly doubles during each iteration demonstrating quadratic
convergence until the round-off limit of 1× 10−16. A graphical view of the Newton iterations is shown in
Fig. 13.3, where the red-line segments are plots of the linear function f (x) while the blue curve is g(x).
For this example, the parameters are computed using the script model param script.m:
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% model_param_script - define dimensionless parameter values for the

% CVD lumped thermal dynamics model

rhow = 2330;

Cpw = 2300;

ew = 0.7;

...

e_qs = tau*sig*eq*es*Ta^4/(rhoq*Cpq*delq)

nu_q = tau*h/(rhoq*Cpq*delq)

q_q = tau*a*Q/(rhoq*Cpq*delq)
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Figure 13.3: Convergence of the Newton scheme.

13.2 Multiple equations: The Newton-Raphson method

Returning to the CVD reactor thermal modeling equations (13.1, 13.2), at steady state and written in
vector form

0 = g(z) with z =

[
Tw
Tq

]
and

g1(Tw , Tq) = εqwF (T 4
q − T 4

w ) + εsw (2− F )(1− T 4
w ) +

κw
α

(Tq − Tw ) + qwu

g2(Tw , Tq) = εwq F (T 4
w − T 4

q ) + εsq(1− F )(1− T 4
q ) + νq(1− Tq) + qqu
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For the CVD reactor lumped thermal model, the Jacobian matrix J is found to be

J =

[
J1,1 J1,2

J2,1 J2,2

]
=

 −4εqwFT 3
w − 4εsw (2− F )T 3

w −
κw
α

4εqwFT 3
q +

κw
α

4εwq FT 3
w −4εwq T 3

q − 4εsq(1− F )T 3
q − νq

 .

We now consider solving both the wafer and quartz window steady state energy balance equations to
compute Tw and Tq for full lamp power u = 1 using the script newton2eqn.m:

% Newton-Raphson procedure applied the the CVD reactor

% wafer energy balance

model_param_script % set dimensionless parameter values for this model

Tw = 2; % initial solution guess

Tq = 2; % initial solution guess

u = 1;

for iters = 1:8

g1 = e_wq*F*(Tq^4-Tw^4) + e_ws*(2-F)*(1-Tw^4) ...

+ k_w/alf*(Tq-Tw) + q_w*u;

g2 = e_qw*F*(Tw^4-Tq^4) + e_qs*(1-F)*(1-Tq^4) ...

+ nu_q*(1-Tq) + q_q*u;

J11 = -4*e_wq*F*Tw^3 - 4*e_ws*(2-F)*Tw^3 - k_w/alf;

J12 = 4*e_wq*F*Tq^3 + k_w/alf;

J21 = 4*e_qw*F*Tw^3;

J22 = -4*e_qw*F*Tq^3 - 4*e_qs*(1-F)*Tq^3 - nu_q;

g = [g1; g2];

J = [J11 J12; J21 J22];

update = -J\g;

normup = sqrt(update’*update)

Tw = Tw + update(1)

Tq = Tq + update(2)

end

For this case we compute the length (2-norm) of the update, and again observe the quadratic convergence
to the solution Tw = 2.67 (802K) and Tq = 2.62 (786K):

Iteration i || Update || T i
w T i

q

0 - 2 2
1 1.3652e+00 3.0365 2.8885
2 3.8702e-01 2.7310 2.6509
3 6.4840e-02 2.6745 2.6191
4 1.8667e-03 2.6727 2.6186
5 1.7971e-06 2.6727 2.6186
6 1.7987e-12 2.6727 2.6186
7 1.2215e-16 2.6727 2.6186
8 1.2215e-16 2.6727 2.6186
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13.3 CVD thermal model derived from the neqmodel class

To use our object-oriented approach to model building, we define the class cvdtherm2eqn by creating
the directory cvdtherm2eqn and in it, defining the constructor method cvdtherm2eqn.m in derived
from the naemodel class, and overloading its rhs.m method.

Inside the constructor method cvdtherm2eqn.m, the problem variables and parameters are defined and
the state of the object created using this constructor method is initialized to the initial solution estimates
and parameter values. Note how the constructor method takes a lamp power level u as input:

function B = cvdtherm2eqn(u)

% cvdtherm2eqn.m A nonlinear equation model object constructor, derived

% from the neqmodel class. Called as

%

% A = cvdtherm2eqn

model_param_script % set dimensionless parameter values for this model

Tw = 2; Tq = 2;

if nargin < 1 % default power input

u = 1;

end

var = assocarray({’Tw’ Tw ’Tq’ Tq});

param = assocarray({ ’e_wq’ e_wq ’e_ws’ e_ws ’k_w’ k_w ...

’q_w’ q_w ’e_qw’ e_qw ’e_qs’ e_qs ...

’nu_q’ nu_q ’q_q’ q_q ’u’ u ...

’F’ F ’alf’ alf ...

});

A = naemodel(var,param);

B = struct([]);

B = class(B,’cvdtherm2eqn’,A);

In the residual.m method, the “right-hand sides” of the modeling equations are defined; in computing
the steady-state solutions, these equations define the residual values that are to be driven to zero. Inside
the residual.m method, the variables and parameter values are unpacked from the modeling object and
are placed in the workspace of the residual.m function. The residual functions then are evaluated and
the residual values, stored as a MATLAB cell array, are used to update the modeling object resid field.

function g = rhs(A)

% rhs.m Nonlinear equation model object residual update.

%

% INPUT/OUTPUT PARAMETERS

% A : an object derived from the naemodel class

unpack(A)

g{1} = e_wq*F*(Tq^4-Tw^4) + e_ws*(2-F)*(1-Tw^4) ...

+ k_w/alf*(Tq-Tw) + q_w*u;

g{2} = e_qw*F*(Tw^4-Tq^4) + e_qs*(1-F)*(1-Tq^4) ...

+ nu_q*(1-Tq) + q_q*u;
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And now we interactively solve the problem in a MATLAB session:

>> A = cvdtherm2eqn;

>> A = newton(A);

Update/residual norm = 0.84874 / 0.053809

Update/residual norm = 0.071781 / 0.0024428

Update/residual norm = 0.00071572 / 0.00011191

Update/residual norm = 3.2778e-05 / 5.0809e-06

Update/residual norm = 1.4882e-06 / 2.3078e-07

Update/residual norm = 6.7596e-08 / 1.0482e-08

Update/residual norm = 3.0702e-09 / 4.7609e-10

Update/residual norm = 1.3945e-10 / 2.1625e-11

Update/residual norm = 6.3339e-12 / 9.8171e-13

Update/residual norm = 2.8746e-13 / 4.5271e-14

again observing the slightly reduced (less than quadratic, but not much) convergence rate.

At this point, the modeling object A has stored in its var field the assocarray object containing the
variable values corresponding to the converged solution. We can view the solution values using the
naemodel/display.m method:

>> A

cvdtherm2eqn object "A"

Variables

---------

Tw:

2.6727

Tq:

2.6186

Parameters

----------

e_wq:

0.0600

e_ws:

0.0084

...

We can unpack the parameters and variables from the converged model object, placing copies in the
current workspace and translating them into dimensional quantities:

>> unpack(A)

>> 300*Tw

ans =

801.8108

>> 300*Tq

ans =

785.5657
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13.4 Continuation

We can use our numerical continuation technique to effectively study the behavior of the reactor system
as a function of power input u over a range of values.

We start the algorithm at u = 0 (lamps off) so that Tw = 1, and Tq = 1 (recall that an exact
solution is not necessary to begin the continuation - in fact, only a good initial guess is needed to start
the Newton-Raphson procedure to find the initial point). The MATLAB script to compute a vector of
naemodel-derived objects is as follows:

A = cvdtherm2eqn(0); % note lamp power setting

A = newton(A);

ds = 0.5;

bifparam = ’u’;

for i = 2:8

if i == 2

[Apred(i),dvds] = predictor(A(i-1),bifparam,ds);

else

[Apred(i),dvds] = predictor(A(i-1),bifparam,ds,dvds);

end

A(i) = newton(Apred(i),A(i-1),bifparam,ds); % the corrector step

end

The results are plotted by extracting the parameter and corresponding solution values from the vector of
cvdtherm2eqn; results are plotted in Fig. 13.4 where the accuracy of the predictor steps is demonstrated.

13.5 Linearized system dynamics

As a final analysis of the reactor system, we examine its dynamic behavior under small perturbations.
This is accomplished by linearizing the system at a converged steady state solution, computing the
eigenvalues and eigenvectors of the Jacobian array, and superimposing a set of particular solutions to the
linear ordinary differential equations.

We can write the Taylor’s series expansion of g at (T̄w , T̄q) as

dTw/dt = g1(T̄w , T̄q) +
∂g1

∂Tw

∣∣∣∣
T̄w ,T̄q

(Tw − T̄w ) +
∂g1

∂Tq

∣∣∣∣
T̄w ,T̄q

(Tq − T̄q)

dTq/dt = g2(T̄w , T̄q) +
∂g2

∂Tw

∣∣∣∣
T̄w ,T̄q

(Tw − T̄w ) +
∂g2

∂Tq

∣∣∣∣
T̄w ,T̄q

(Tq − T̄q)

or, neglecting the second and higher-order terms

dz/dt = J(z− z̄).

We consider the case of the system operated at full power u = 1; we construct a model object A,
determine the converged solution, and then use the jacobian.m method of the naemodel class:
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Figure 13.4: Predictor (red squares) / corrector (blue circles) continuation results for the two-equation
CVD thermal model showing the wafer temperature as a function of lamp power input.

>> A = cvdtherm2eqn;

>> A = newton(A);

>> J = jacobian(A);

>> [U,S] = eig(J)

U =

-0.9905 -0.5782

0.1376 -0.8159

S =

-3.6628 0

0 -0.1611

We see that one eigenvalue is much larger in magnitude than the other; the two time scales are attributable
to the large differences in thermal mass of the wafer and shower head. We show this by plotting the
eigenvectors and the solution trajectories; results are shown in Fig. 13.5.
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Figure 13.5: The linearized dynamics of the 2 ODE CVD reactor thermal dynamics illustrating the
relatively slow dynamics of the showerhead compared to the much thinner wafer.

figure(1), clf

plot([-U(1,1) U(1,1)],[-U(2,1) U(2,1)], ...

[-U(1,2) U(1,2)],[-U(2,2) U(2,2)],’Linewidth’,2)

legend(’u_1’,’u_2’)

xlabel(’T_w’), ylabel(’T_q’)

grid on

title([’\lambda_1 = ’,num2str(S(1,1)),’ \lambda_2 = ’,num2str(S(2,2))])

t = [0:0.005:2];

hold on

for i = 1:20

z0 = 2*rand(2,1)-[1;1];

z = lodesolver(J,t,z0);

plot(z(1,:),z(2,:),’r’)

end

hold off



Chapter 14

Case Study: Adiabatic CSTR with
first-order reaction

Consider the well-insulated (adiabatic) Continuous-flow Stirred-Tank Reactor (CSTR) where the single,
exothermic, mole-conserving reaction A → B takes place. The material and energy balances on the
reactor give

Quantity In − Quantity Out = Quantity Consumed + Accumulated

QCin − QC = Vk0e−Ea/RTC + V
dC

dt

QρCp(Tin − Tref )− QρCp(T − Tref ) = −V ∆HR
k0e−Ea/RTC + V ρCp

dT

dt

Q, T, C

Q,
T  ,
C

in

in
Parameter Description Units Value

Cin inlet conc kgmol/m3 3.0
Q feed/effluent flow rate m3/s 6× 10−5

ρ liquid density kg/m3 1000
Cp heat capacity J/kg K 4190
V reactor volume m3 1.8× 10−2

∆HR
exothermic heat of rxn J/kgmole 2.09× 108

k0 preexp constant 1/s 4.48× 106

Ea activation energy J/gmol 62,800
R gas constant J/gmole/K 8.314

Tin inlet temp K 300

Figure 14.1: Adiabatic CSTR with representative parameter values.

Defining the dimensionless variables and constants

x =
C

Cin
, y =

T

Tin
, τ =

Q

V
t, γ =

Ea

RTin
, α =

Vk0

Q
, β =

∆HR
Cin

ρCpTin
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with data taken from [24] and presented in Fig. 14.1, we find that the modeling equations can be written
in much simpler form

dx

dτ
= 1− x − αxe−γ/y

dy

dτ
= 1− y + αβxe−γ/y

with
γ = 25.2, α = 1.344× 109, β = 0.5

and subject to specified initial conditions.

Solutions of the set of coupled nonlinear equations

1− x − αxe−γ/y = 0 (14.1)

1− y + αβxe−γ/y = 0 (14.2)

define the steady-state solutions to this CSTR model. While not generally possible for sets of nonlinear
equations, (14.1)-(14.2) can be simplified to a set of two equivalent (one nonlinear and one linear) equa-
tions with the property that the nonlinear equation is decoupled from the second equation; furthermore,
because the second equation is linear, it can be solved exactly given the solution to the first. This
transformation effectively performs the equivalent of the forward elimination factorization to the set of
nonlinear equations.

This transformation is performed by multiplying (14.1) by β and subsequently subtracting (14.2) to find

β(1− x) + 1− y = 0 or y = β(1− x) + 1.

This function can be substituted into the material balance equation (14.1) to find

1− x − αx exp

{
−γ

β(1− x) + 1

}
= g(x) = 0 (14.3)

The steady-state solutions to the CSTR model are now defined in terms of the roots of the nonlinear
equation g(x) = 0; because this is a nonlinear equation, it is possible there are no, one, several, or
infinite solutions. It is possible to gain some insight into the behavior of g(x) = 0 by considering how
the solution(s) change as α is varied; because α is inversely proportional to Q at steady state, and by
using (14.3), we can see that

α→ 0 (Q →∞) =⇒ x → 1 no conversion of reactant

α→∞ (Q → 0) =⇒ x → 0 complete conversion

It is possible to take advantage of another unique property of (14.3) to determine all possible solutions
to (14.3): while it is not possible to immediately assess the number of solutions to (14.3), one method
for computing all solutions is to switch the solution procedure around: instead of computing x for some
α, compute α for some x :

α =
1− x

x
exp

{
γ

β(1− x) + 1

}
. (14.4)

This takes advantage of the range of x being limited to the unit interval. We then plot x as a function
of α (Fig. 14.2).
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Figure 14.2: Steady-states for the adiabatic CSTR as a function of α.

14.1 Turning-point bifurcations

It is interesting to consider the solutions which satisfy the modeling equation (14.3) and that make the
first derivative condition (14.5) vanish.

dg

dx
= −1− α exp

{
−γ

β(1− x) + 1

}
− αx exp

{
−γ

β(1− x) + 1

}[
−γβ

[β(1− x) + 1]2

]
(14.5)

This gives two equations from which potentially either a variable or a parameter can be eliminated. For
example, by using the modeling equation in the form (14.4), if we set the derivative computed in (14.5)
equal to zero and substitute in the equation for α, we find the zero-derivatives can be calculated from
the algebraic equation

−1 +
x − 1

x
+ (x − 1)

[
−γβ

[(1− x)β + 1]2

]
= 0

−x [(1− x)β + 1]2 + (x − 1) [(1− x)β + 1]2 − γβ(x − 1)x = 0

(1− x)2β2 + 2(1− x)β + 1 + γβ(x2 − x) = 0

(γβ + β2)x2 − (2β2 + 2β + γβ)x + β2 + 2β + 1 = 0

so

x =
β(2β + 2 + γ)±

√
β2(2β + 2 + γ)2 − 4β(γ + β)(β + 1)2

2β(γ + β)
= 0.9035, 0.1938.

Compare these points to the values observed in left figure of Fig. 14.2. We note that multiple solutions
will not be found when

β2(2β + 2 + γ)2 − 4β(γ + β)(β + 1)2 < 0.

This illustrates an important characteristic of nonlinear systems: that multiple solutions can exist and
can correspond to true physical solutions – for the adiabatic CSTR, only two of these are normally seen
due to the saddle-type stability of the intermediate state (the dynamics of the system near the steady
states will be discussed in the next chapter). We note that the Newton procedure can compute all of the
steady states, regardless of their stability characteristics.
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14.2 Multistability

As a first step in understanding the dynamical behavior of nonlinear systems, let us put some of the facts
we already understand together: if we calculate the three steady-state solutions zs i , i = 1, 2, 3 of the
nonadiabatic CSTR model

dz

dτ
= g(z)

for the parameter values given previously, and linearize the modeling equations at these solutions, the
three steady-state solutions and the corresponding parameter values for the ODE solutions valid in the
neighborhood of the steady solution points are given in the following table.

Variable Low Conv Medium Conv High Conv
xs 0.9810 0.6902 0.0158
ys 1.0095 1.1549 1.4921

λ1, λ2 -1.00, -0.78 -1.00, 1.47 -57.59, -1.00

U

[
−0.99 0.89

0.04 −0.44

] [
−0.99 0.89

0.07 −0.44

] [
−0.89 0.17

0.44 −0.98

]
At this point, we make the following observations:

1. The three steady states demonstrate different aspects of stability and instability – the upper and
lower steady states attracting all initial conditions, and the middle demonstrating saddle stability,
where only initial conditions on the “stable eigenvector” reach the steady state;

2. The phase space is organized by the saddle-unstable manifolds.

The issues of stability raise the question of how one determines which initial conditions are attracted
to each of the stable steady states. This requires numerical integration of the fully nonlinear system.
Specifically, we compute numerically the invariant manifolds which form the skeleton organizing the
dynamics in the phase space.

Stable Manifold W s : Points, which when followed forward in time, asymptotically approach the fixed
point – W s is tangent to the space spanned by the stable eigenvectors of the fixed point.

Unstable Manifold W u: Points, which when followed in reverse time, asymptotically approach the fixed
point – W u is tangent to the space spanned by the unstable eigenvectors of the fixed point.

14.3 Review problems

1. For the adiabatic CSTR modeling equations, using a Newton-Raphson method, solve for the steady-
states of the 2-equation problem for γ = 25.2, β = 0.5, and α = 1.344 × 109 ∗ [0.05 : 0.1 : 4];
plot the roots in x vs. α and y vs. α plots; compute the eigenvalues of the converged Jacobian
arrays to assess the stability of each solution, and in the plots, denote stable solutions by green o
markers, unstable by red * markers.



Chapter 15

Case Study: Flash distillation for a
non-ideal mixture

Following the description of Doherty and Malone [11], we consider a case where a binary system of
components is in vapor-liquid equilibrium where the vapor phase is consider to be an ideal gas and the
liquid is a nonideal mixture. Expressing the equilibrium relationship in terms of liquid-phase activity
coefficients

Pyi = Psat
i γixi i = 1, 2

where the notation is defined in Fig. 15.1.

F

L

V

x1

x2

y1

y2 T, P

Figure 15.1: The single-stage separator.

We consider the two components to be methanol (component 1) and water (component 2); for this
system, we can use the Wilson equation to define the activity coefficents:

ln γ1 = − ln(x1 + Λ12x2) + x2

(
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

)
ln γ2 = − ln(x2 + Λ21x1)− x1

(
Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

)
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with

Λ12 =
vL

2

vL
1

exp(−A12/RT )

Λ21 =
vL

1

vL
2

exp(−A21/RT )

where vL
i is the pure component molar volume of component i . More information can be found in [11];

parameter values are listed in the MATLAB functions below.

15.1 The variables and modeling equations

Our system consists of the six variables:

variables: xm, ym, xw , yw , T , P

and the four equations - two mole fraction definitions:

0 = xm + xw − 1

0 = ym + yw − 1

and the two phase relationships

0 = Pym − Psat
m γmxm

0 = Pyw − Psat
w γwxw

This leaves two degrees of freedom that must be specified in order to find a unique solution to our
problem (validate this with the Gibbs phase rule).

15.2 Definition of the model class meohwaterwilson

First, let us examine the constructor method of this new model class, which is derived from our naemodel
class:
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ffunction B = meohwaterwilson(T,P)

% meohwaterwilson.m A nonlinear equation model object constructor, derived

% from the neqmodel class. Called as

%

% A = meohwaterwilson(T,P)

%

% where P = total pressure (atm), T = temp (K)

A12 = 19.2547;

A21 = 554.0494;

vLm = 40.73;

vLw = 18.07;

R = 1.98721;

% Antoine eqn coeffs, from NIST webbook

Am = 5.20409; % T in K, P in bar; valid from 288K to 357K

Bm = 1581.341;

Cm = -33.50;

Aw = 4.65430; % valid from 56K to 373K

Bw = 1435.264;

Cw = -64.848;

xm = 0.5; ym = 0.5; % variables and initial guesses

xw = 0.5; yw = 0.5;

var = assocarray({’xm’ xm ’ym’ ym ’xw’ xw ’yw’ yw});

param = assocarray({ ’T’ T ’P’ P ’A12’ A12 ’A21’ A21 ...

’vLm’ vLm ’vLw’ vLw ’R’ R ...

’Am’ Am ’Bm’ Bm ’Cm’ Cm ...

’Aw’ Aw ’Bw’ Bw ’Cw’ Cw });

A = naemodel(var,param);

B = class(struct([]),’meohwaterwilson’,A);

The residual method of this class computes the vapor pressure of the two pure components at the current
value of temperature T
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function res = residual(A)

% residual.m Nonlinear equation model object residual update.

%

% INPUT/OUTPUT PARAMETERS

% A : an object derived from the neqmodel class

unpack(A)

% MeOH = 1 Water = 2

% saturated liquid vapor pressure, bar

Psatm = 10^(Am - Bm/(T+Cm) );

Psatw = 10^(Aw - Bw/(T+Cw) );

% Convert from bar to atm

Psatm = 0.986923267*Psatm;

Psatw = 0.986923267*Psatw;

Lam12 = vLw/vLm*exp(-A12/(R*T));

Lam21 = vLm/vLw*exp(-A21/(R*T));

lng1 = -log(xm+Lam12*xw) ...

+ xw*( Lam12/(xm+Lam12*xw) - Lam21/(xw+Lam21*xm) );

lng2 = -log(xw+Lam21*xm) ...

- xm*( Lam12/(xm+Lam12*xw) - Lam21/(xw+Lam21*xm) );

gm = exp(lng1);

gw = exp(lng2);

res{1} = 1 - xm - xw;

res{2} = 1 - ym - yw;

res{3} = ym - Psatm*gm*xm/P;

res{4} = yw - Psatw*gw*xw/P;

15.3 Representative calculations

15.3.1 Computing phase compositions for fixed temperature and pressure

P = 1; % atm

T = 273+90; % K

A = meohwaterwilson(T,P);

A = newton(A)
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After the newton procedure converges, we find the physically reasonable values of

xm : 0.07887

ym : 0.36594

xw : 0.92113

yw : 0.63406

15.3.2 Flash drum material balance

In this problem, we use the results of the previous computation and define a flash drum feed composition
and flowrate as below

zm = 0.2; % feed stream composition

F = 1; % feed basis, mole/min

zw = 1-zm;

and extract the composition data from the converged model object; the composition information then is
used with a species material balance on the flash drum:

xm = get(A,’var’,’xm’)

ym = get(A,’var’,’ym’)

xw = get(A,’var’,’xw’)

yw = get(A,’var’,’yw’)

lv = [xm ym; xw yw]\[F*zm; F*zw];

L = lv(1)

V = lv(2)

to find the following vapor and liquid product stream molar flowrates:

V = 0.4220 L = 0.5780

15.3.3 Computing temperature for specified liquid composition

We can now specify a liquid phase composition of one component (e.g., xm) and compute the corre-
sponding flash drum temperature T ; this can be used to create a y vs. x composition plot. We first
redefine T from a parameter to a variable and switch xm from variable status to a specified parameter:

A = param2var(A,’T’);

A = var2param(A,’xm’);

Then, we step through a loop to compute the corresponding gas phase composition and drum temperature
as xm is varied over its entire range; results are plotted in Fig. 15.2.
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xm = [0:0.05:1];

for i = 1:length(xm)

A = set(A,’param’,xm(i),’xm’);

A = newton(A);

ym(i) = get(A,’var’,’ym’);

T(i) = get(A,’var’,’T’);

end

figure(1), clf

subplot(1,2,1)

plot(xm,ym,’-o’)

grid on

xlabel(’x_m’), ylabel(’y_m’)

subplot(1,2,2)

plot(xm,T,’-o’)

grid on

xlabel(’x_m’), ylabel(’T (K)’)
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Figure 15.2: y vs. x plot for the methanol/water system (left) and the corresponding temperatures
(right)



Chapter 16

Nonlinear ODE methods

Consider the single differential equation mode:

dx

dt
= g(x) = ax − b

with a = −0.5 and b = 1, subject to the initial condition x(t = 0) = 5. We can immediately see that
the steady state solution is xst.st. = −2 and it is stable because of the negative eigenvalue λ = a = −0.5.
The corresponding particular solution is:

x(t) = −2 + 7e−0.5t

We wish to compare the exact solution computed over 0 ≤ t ≤ 10 to the solution approximated with the
(forward) Euler method:

dx

dt

∣∣∣∣
t=tn

= g(xn) (exact)

≈ xn+1 − xn
tn+1 − tn

and so xn+1 = xn + (tn+1 − tn)g(xn)

= xn + ∆tg(xn).

If we consider xn = x(tn) to be a point on the exact solution to the differential equation, we can
write the Taylor’s series approximation to the time-dependent behavior of x (the exact solution) in the
neighborhood of xn as

x(t) = x(tn) +
dx

dt

∣∣∣∣
tn

(t − tn) +
1

2

d2x

dt2

∣∣∣∣
tn

(t − tn)2 + h.o.t.

x(tn+1) = x(tn) + ∆t
dx

dt

∣∣∣∣
tn

+
1

2
∆2

t

d2x

dt2

∣∣∣∣
tn

+ h.o.t.

= x(tn) + ∆tg(xn) +
1

2
∆2

t

dg(x)

dt

∣∣∣∣
tn

+ h.o.t.

160



CHAPTER 16. NONLINEAR ODE METHODS 161

and so subtracting the results from one step of the Euler integrator and retaining only terms of order ∆2
t

or less gives an estimate of the error dn+1 generated by one step of the Euler integrator:

dn+1 = x(tn+1)− xn+1

= x(tn) + ∆tg(xn) +
1

2
∆2

t

dg(x)

dt

∣∣∣∣
tn

− xn −∆tg(xn)

=
1

2
∆2

t

dg(x)

dt

∣∣∣∣
tn

=
1

2
∆2

t [a2xn − ab]

=
1

2
∆2

t

[
(−0.5)2

(
−2 + 7e−0.5t

)
+ 0.5

]
<

1

2
∆2

t [1.75]

so dn+1 < 0.875∆2
t for our particular problem.

This means halving the step size decreases the local error by a factor of 1/4, however, twice as many steps
are required to integrate the system over the original time step and so if we assume errors accumulate in
an additive manner over short time intervals, we see the net effect of halving the step size when using
the Euler method is to halve the error. This is why the Euler method is called a first order method,
even though it is accurate to order 2. A plot of the true solution to our scalar ODE problem and the
predictions of the Euler integrator are shown in Fig. 16.1. We notice that for this particular example, both
the local and global error decrease with time – the first is due to the exponential term e−0.5tn shrinking
with time and the second is due to the Euler approximation and the true system being attracted to the
same, steady-state solution.

There are other issues that have not be discussed, but should be mentioned:

• The Euler method works for sets of equations by simply employing vector notation:

zn+1 = zn + ∆tg(zn) subject to z0

• The method works with mixed algebraic/ODE systems provided the AEs are solved at each time
step for some subset y the state variables:

zn+1 = zn + ∆tg(zn, yn)

f(zn, yn) = 0

subject to z0;

• Stability issues set an upper practical limit on the time step sizes for most numerical integration
techniques, because instabilities can cause “runaway” to infinitely large global errors in systems
which in reality display bounded, long-time behavior.

16.0.1 An isothermal chemical reactor model

Let us consider the simple 2A → B reaction taking place in a continuous-flow, stirred-tank reactor.

We make the following two major assumptions:
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Figure 16.1: Euler method (marked
by x’s) vs. exact solution (solid
curve) for step size ∆t = 1. Also
shown are the results from halving
the step size (squares) and the 2nd-
order accurate Runge-Kutta method
(circles), demonstrating its much
greater accuracy with fewer time
steps.

1. The system is isothermal

2. No volume change results from the chemical reaction

The transient material balance on species A is derived from

A in− A out = rate of A accumulation + rate of A consumption

With Q as the volumetric flow of reactant feed into the reactor in m3/s, C as the concentration of A in
mol/m3, V the reactor volume in m3

QCin − QC = V
dC

dt
+ 2VkC 2

where
kC 2 = rate of production of B, mol/(m3s)

Defining the dimensionless quantities

x =
C

Cin
τ =

Q

V
t

we find the dimensionless nonlinear ODE

1− x =
dx

dτ
+ 2Dax2

subject to initial condition x(0) = x0 and Damköhler number

Da =
VkCin

Q

For this problem, we observe that the steady-state, corresponding to dx/dt = 0 is found from the solution
of

0 = 1− xstst − 2Dax2
stst
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a quadratic equation with two real roots

xstst = −1±
√

1 + 8Da

4Da
.

It is not hard to see that one root always is positive and corresponds to the true solution. The negative
solution is physically meaningless; however, it demonstrates saddle-type stability and so initial values less
than this root value will diverge to negative infinity.

16.0.2 Inert species

Now consider the case where the reactor is initially filled with an inert material and the feed is a combina-
tion of A and the inert. Simply extending the modeling approach described above is problematic in that
a model where the mole fractions do not sum to unity can result. Therefore, we relax the assumption
that no volume change takes place during the reaction and we now assume the species act as an ideal
gas. Therefore, molar balances are in order where

ṁin = molar feed flow, mol/s

ṁout = molar product flow, mol/s

m = moles of gas in the reactor

φ(t) = feed fraction of A (remainder is the inert species)

x1, x2, x3 = mole fractions of A, B, and inert, respectively

We note that under the ideal gas assumption and constant reactor volume V , m must then be constant,
but ṁin is likely to be greater than ṁout .

Using these definitions, we write each of the species material balances as

φṁin − x1ṁout = m
dx1

dt
+ 2Vk

(x1m

V

)2

0− x2ṁout = m
dx2

dt
− Vk

(x1m

V

)2

(1− φ)ṁin − x3ṁout = m
dx3

dt

We can now compute ṁout by requiring the system to preserve x1 + x2 + x3 = 1 simply by adding the
equations up to find

ṁin − ṁout = Vk
(x1m

V

)2

or ṁout = ṁin −
km2

V
x2

1

Making this substitution and dividing through by ṁin,

φ− x1

[
1− km2

ṁinV
x2

1

]
=

m

ṁin

dx1

dt
+ 2

km2

ṁinV
x2

1

x2

[
1− km2

ṁinV
x2

1

]
=

m

ṁin

dx2

dt
− km2

ṁinV
x2

1

(1− φ)− x3

[
1− km2

ṁinV
x2

1

]
=

m

ṁin

dx3

dt
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Now after defining our new dimensionless time and Damköhler number as

τ =
ṁin

m
t Da =

km2

ṁinV

we obtain our set of nonlinear ODEs

dx1

dτ
= φ− x1

[
1− Dax2

1

]
− 2Dax2

1

dx2

dτ
= x2

[
1− Dax2

1

]
+ Dax2

1

dx3

dτ
= (1− φ)− x3

[
1− Dax2

1

]
subject to initial condition

x0 =

 x1

x2

x3


τ=0

=

 0
0
1



16.0.3 Time-varying feed composition

An upstream process disturbance affects the concentration of species A in the fead stream. In previous
problems, Cin was taken as a constant; we now define

φ(τ) = mole fraction of A in feed stream =
1− sin 2πτ

2

where the remainder of the feed stream consists of the inert component. Our reactor modeling equations
as well as initial conditions remain the same.

16.1 Our Euler integrator

function [tout,yout] = euler(fun,del,tfinal,y0,p)

% EULER A forward-Euler integrator, Called as

% [tout,yout] = euler(fun,del,tfinal,y0,p)

% where fun = function handle, del = time step, tfinal = final time,

% y0 is the initial condition, and p contains the parameter(s), if

% any. Note that the function follows they standard MATLAB

% format: dydt = fun(t,y,p)

if nargin < 5, p = []; end % set default as empty

t = 0; y = y0; i = 1; % initial conditions

tout(1) = t; yout(:,1) = y0; % store results to return
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while t <= tfinal % integration loop

y = y + del*fun(t,y,p);

t = t + del;

i = i + 1;

% check for endpoint

if t >= tfinal

slope = (y-yout(:,i-1))/del;

yout(:,i) = slope*(tfinal-tout(i-1)) + yout(:,i-1);

tout(i) = tfinal;

break

else

tout(i) = t; yout(:,i) = y;

end

end

The function containing that computes the time-derivatives for the ODEs to be solved is in the standard
MATLAB format (recall the nonlinear algebraic equations in Chapter 12):

dxdt = funname(t,x,p)

where t is the current time (if used explicitly in the differential equations), x is a column vector of the
current state variable values, and p is a vector (or other data structure) of parameter values. The Euler
integrator typically would be used in the following manner:

>> f = @funname;

>> [t,y] = euler(f,del,tfinal,y0,p);

>> plot(t,y)

>> % compute steady state using the final point

>> % in time as initial Newton guess

>> [ystst,conflag] = nr(y(:,end),p,f);

>> if conflag, disp(’Converged solution xstst = ’), end

>> disp(xstst)

16.2 Nonlinear pendulum example

Consider the pendulum equation
d2θ

dt2
= −g

L
sin θ (16.1)

which for small amplitude oscillations can be linearized (sin θ ≈ θ) to obtain

d2θ

dt2
= −g

L
θ

to find the classic (i.e., Galileo’s) result that the frequency of oscillation is

ω =
√

g/L

which is independent of the amplitude of the oscillations. We wish to consider the fully nonlinear system
(16.1) using our Euler integrator, introducing two new concepts:
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1. How one can convert (16.1) into initial-value-problem form;

2. How one can examine the dynamics of a system in the phase plane.

Before proceeding, we introduce the dimensionless time τ = t
√

g/L to find the dimensionless nonlinear
pendulum equation:

d2θ

dτ 2
= − sin θ

Defining the angular velocity as

Ω =
dθ

dτ

allows us to split (16.1) into two equations

dθ

dτ
= Ω

dΩ

dτ
= − sin θ

now subject to the initial conditions

x0 =

[
θ(0)
Ω(0)

]
We understand that this problem much conserve energy; therefore, we defined the Hamiltonian H as

H =
1

2
Ω2 − cos θ

which consist of the sum of kinetic and potential energy for the dimensionless system. It is simple to
prove H is a content by differentiating with repeat to dimensionless time:

dH

dτ
= Ω

dΩ

dτ
+ sin θ

dθ

dτ
= Ω(− sin θ) + (sin θ)Ω

= 0

Examining the pendulum equations in the phase plane reveals the following dynamical behaviors corre-
sponding to different values of H >= −1:

H = −1 vertically downward, motionless
H = 0 results from initial condition Ω0 = 0, θ0 = π/2
H = 1 defines the separatrix
H > 1 continuous revolutions about the pivot

16.3 Computing time step sizes – the Runge-Kutta methods

The motivation for developing higher-order integration schemes can be justified by the following argument:
if we compare a third-order integrator to the first-order Euler, we will see that the 3rd-order method
requires two additional evaluations of the right-hand-side function g in order to cover a single time-step
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∆t . This means we should allow our Euler to take step sizes which are one third this value, and so the
accumulated discretization error of the Euler scheme dE might be

dE = 3cE

(
1

3
∆t

)2

=
1

3
cE∆2

t .

The 3rd-order method, however, generates the following error

dT = cT∆4
t

and so given that the two constants are bounded, we should be able to find a suitably small time step
∆t such that the third-order method is more accurate that first, with both methods requiring the same
amount of computational work.

Let us consider deriving a second-order accurate integrator, a numerical technique which generates errors
of order ∆3

t (written as O(∆3
t )) during each step

x(tn+1) = x(tn) + ∆t
dx

dt

∣∣∣∣
tn

+
1

2
∆2

t

d2x

dt2

∣∣∣∣
tn

+
1

6
∆3

t

d3x

dt3

∣∣∣∣
tn

+O(∆3
t )

= x(tn) + ∆tg(xn, tn) +
1

2
∆2

t

d

dt
g(x , t)

∣∣∣∣
tn

+
1

6
∆3

t

d2

dt2
g(x , t)

∣∣∣∣
tn

+O(∆3
t )

= x(tn) + ∆tg(xn, tn) +
1

2
∆2

t

[
∂g

∂x

dx

dt
+
∂g

∂t

]
tn

+O(∆3
t )

= x(tn) + ∆tg(xn, tn) +
1

2
∆2

t [gxg + gt ]tn +O(∆3
t )

If we rewrite the Euler method in “update” notation:

xn+1 = xn + u with u = ∆tg(xn, tn),

and let u1 be our first estimate of the true update

u1 = ∆tg(xn, tn)

and use this to compute the update at some fraction of the total time step

u2 = ∆tg(xn + βu1, tn + α∆t)

≈ ∆tg + ∆t [gxu1(β − 0) + gt∆t(α− 0)]tn +O(∆3
t )

= ∆tg + ∆2
t [gxgβ + gtα]tn +O(∆3

t ) near (xn, tn) (small α, β)

We use the subscript notation gx and gt to denote partial derivatives with respect to x and t, and choose
0 < α < 1 and 0 < β < 1. We can now use some linear combination of the two updates to compute the
state of the system at the end of the time step ∆t :

xn+1 = xn + γ1u1 + γ2u2. (16.2)

The coefficients γ1 and γ2 are determined by substituting in the expressions for u1 and the Taylor’s series
of u2 at the current time step (xn, tn) to (16.2)

xn+1 = xn + γ1∆tg + γ2

[
∆tg + ∆2

t (gxgβ + gtα)
]

+O(∆3
t )

= xn + ∆t [γ1g + γ2g ] + ∆2
t [γ2gxgβ + γ2gtα] +O(∆3

t )
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and so comparing the expression above term-by-term with the expansion of the true solution gives

γ1g + γ2g = g

γ2gxgβ =
1

2
gxg

γ2gtα =
1

2
gt

so

γ1 + γ2 = 1 γ2β =
1

2
γ2α =

1

2
.

If we choose γ2 = 0 we recover our single step Euler integrator. A typical choice for α (truly optimal
values require more extensive calculations) to give us a unique solution to the set of three equations is
α = 1/2. This means we can write our integration procedure as follows

1. With an initial guess or the most recently used value of ∆t , compute the value of the state at the
next time step, accurate toO(∆3

t ) (resulting in a 2nd-order accurate integrator) using α = β = 1/2,
γ2 = 1, γ1 = 0:

u1 = ∆tg(xn, tn)

u2 = ∆tg(xn + u1/2, tn + ∆t/2)

xn+1 = xn + u2.

2. Compute the difference between the 1st-order and 2nd-order accurate solutions

dn+1 = (xn + u2)− (xn + u1)

= u2 − u1

= C ∆2
t

3. Compute the time step size which guarantees a specified error tolerance dmax of a 1st-order accurate
solution by first evaluating the constant above and then computing

∆t =
√

dmax/C

The solution accurate to O(∆3
t ) is then recomputed; we also do not allow the step size to grow

beyond a certain practical constraint.

A comparison of the 1st-order accurate Euler integrator and the 2nd-order accurate Runge-Kutta inte-
grator (with dmax = 0.02) are shown in Fig. 16.1.

16.4 Numerical integration of ordinary differential equations

Let us first test some computational methods for solving ODEs on a scalar system that has an exact
solution.
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a = -0.5; b = 1;

x0 = 5;

tfinal = 10;

texact = [0:0.01:tfinal];

xexact = (a*x0-b)*exp(a*texact)/a + b/a;

delt = 1; % Euler integrator for the fixed stepsize

t = 0;

x = x0;

i = 1;

while t <= tfinal

teuler(i) = t;

xeuler(i) = x;

dxdt = odetrivial(t,x);

x = x + delt*dxdt;

i = i + 1;

t = t + delt;

end

Now, halve the step size

delt = delt/2;

t = 0;

x = x0;

i = 1;

while t <= tfinal

teuler_half(i) = t;

xeuler_half(i) = x;

dxdt = odetrivial(t,x);

x = x + delt*dxdt;

i = i + 1;

t = t + delt;

end

Now use a MATLAB Runge-Kutta numerical integration routine (ode23)

[tode23,xode23] = ode23(’odetrivial’,[0, tfinal],x0);

plot( texact,xexact,teuler,xeuler,’x-’,teuler_half, ...

xeuler_half,’s-’,tode23,xode23,’o’)

grid on

legend(’exact’,’euler’,’euler/2’,’ode23’)

and the function odefun.m called by MATLAB’s ode23 method:

function dxdt = odetrivial(t,x)

a = -0.5; b = 1;

dxdt = a*x - b;



CHAPTER 16. NONLINEAR ODE METHODS 170

16.4.1 A nonlinear problem

Create a file called lorfun.m and include the following function:

function f = lorfun(t,s)

% Lorenz attractor

sigma = 10; rho = 28; beta = 8/3;

x = s(1,1);

y = s(2,1);

z = s(3,1);

f(1,1) = -beta*x + y*z;

f(2,1) = sigma*(z-y);

f(3,1) = -x*y + rho*y - z;

and then try

[T,Y] = ode45(@lorfun,[0 40],[5; 20; -10]);

figure(1)

subplot(2,1,1)

plot(T,Y)

xlabel(’time’)

legend(’x’,’y’,’z’)

grid on

axis tight

figure(2)

subplot(2,2,1)

plot3(Y(:,1),Y(:,2),Y(:,3))

grid on

xlabel(’x’), ylabel(’y’), zlabel(’z’)

axis tight

The dynamic solutions are plotted in Fig. 16.2.

16.5 Review problems

1. The concentration of a chemical species in a tubular reactor is denoted x and it is a function of
position within the reactor x(z). Given the inlet concentration x(0) = 1, find the length of reactor
z = L required to achieve 99% conversion of the reactant if the reactor can be modeled by the
differential equation:

dx

dz
= −0.1x2

Use your own forward Euler method.

2. Diffusion and reaction in a catalyst pellet can be described by

0 = 0.5
d2x

dz2
− 2x2
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z Figure 16.2: Numerical integration
of the Lorenz equations illustrating
the chaotic dynamics characteristic
of this system.

subject to boundary conditions

dx

dz
= 0 at z = 0 and x = 1 at z = 1.

Transform this into a system of 2 equations by defining y = dx/dz , and develop a Newton procedure
to compute the reactant profile x(z) solution by guessing a value of x(0) and integrating the system
of equations to z = 1 using MATLAB’s ode45.m

3. Consider the system of equations:

dx/dt = v

dy/dt = −2(x2 − 1)y − x

By hand, determine the steady state(s) for this system; at this steady state, determine the value
of the elements in the Jacobian array and using MATLAB’s eig.m method, determine if the system
is stable at this point. Then, using MATLAB’s ode45.m, compute solutions in time and plot them
to assess the true long-term behavior of this system.



Chapter 17

Orthogonal function sequences

17.1 Norms, function spaces, and orthogonal functions

In a lumped-parameter system, we have a clearly defined notion of distance as a difference between two
values of a scalar function, e.g., the temperature difference between two objects of uniform temperature.
In a distributed parameter system, this idea is not as straightforward. For example, in Fig. 17.1, how do
we measure the difference between curves f (x) and T (x) in such a way that the computation produces
a scalar value? How do we then use this to fit our general solution to a particular solution determined
by an initial condition?

a b

f(x)

T(x)

x

d(x)

Figure 17.1: The difference between two functions of a single variable x.

The difference between two real-valued scalar functions, f and T , over the range b ≥ x ≥ a can be
measured in a number of ways: ∫ b

a

|f (x)− T (x)|dx = ‖f (x)− T (x)‖1(∫ b

a

[f (x)− T (x)]2dx

)1/2

= ‖f (x)− T (x)‖2

sup
b≥x≥a

|f (x)− T (x)| = ‖f (x)− T (x)‖∞

172
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Functions defined in the domain Ω whose norms are bounded are defined in the function spaces

L1(Ω) L2(Ω) L∞(Ω)

These function spaces are vector spaces; we will be primarily interested in real-valued functions in Hilbert
spaces X = L2(Ω), and so, in general, we will use the norm ‖ · ‖ definition

‖f ‖2 =

(∫
Ω

f 2 dω

)1/2

where Ω is the (spatial) domain of function f and dω is a differential element in that domain.

17.1.1 The optimal projection

In later chapters, we frequently will encounter the problem of finding the best approximation T (x) of a
known function f (x) where T (x) is defined in terms of the trial function expansion

T (x) =
N∑
j=0

ajψj(x)

in domain Ω. We can give some meaning to the equivalence of T and f in the 2-norm sense by defining
the distance function d as

d(x) = f (x)− T (x) = 0 in Ω

and so the two curves are considered equal1 when ‖d‖2
2 = 0. Thus, dropping the 2 subscript,

||f (x)− T (x , 0)||2 = ‖d‖2

so

∫
Ω

(
f 2 − 2fT0 + T 2

0

)
dω = R

Our goal is to find a sequence aj such that the constant R (the residual) is minimized. This condition
becomes

∂R

∂aj
=

∂

∂aj

∫
Ω

f 2 − 2f
∞∑

m=0

amψm +

( ∞∑
m=0

amψm

)2
 dω

= −
∫
Ω

2f ψj dω +

∫
Ω

2

( ∞∑
m=0

amψm

)
ψj dω

= −2

∫
Ω

f ψj dω + 2aj

∫
Ω

ψjψj dω when

∫
Ω

ψjψk dω = 0 for j 6= k.

Notice how the integrals are simplified when the ψm belong to an orthogonal sequence of functions – we
will return to this point in the following section. Thus,

∂R

∂aj
= 0 when aj =

〈f ,ψj〉
〈ψj ,ψj〉

(17.1)

1It is important to stress that this measurement of the equivalence of two curves is restricted to the particular norm
used – it is possible to find cases where curves deemed equal in one norm are found to be different under a different norm.
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where the inner product of two functions 〈f , g〉 is defined as

〈f , g〉 =

∫
Ω

fg dω.

Because ∂2R/∂a2
j = 2〈ψj ,ψj〉 > 0, this does indeed correspond to a minimum. This is the classic Fourier

coefficient calculation. Notice, also, the intimate ties of this method for computing the “best” initial
mode amplitude coefficients with the least-squares solution procedure.

17.1.2 Orthogonal function sequences

Two functions ψi (x) and ψj(x) are defined as orthogonal over a domain Ω if they satisfy

〈ψj ,ψk〉 =

∫
Ω

ψjψk dω =

{
cj if j = k
0 otherwise.

This property is guaranteed by the Sturm-Liouville theorem, which will be discussed in more detail in
section 17.3 which is dedicated to these problems. Furthermore, if the constants cj = 〈ψj ,ψj〉 = 1,
the sequence of functions ψj is called an orthonormal sequence. Orthonormal sequences then simplify
computations of the coefficients in determining a particular solution from a general solution, i.e.,

aj = 〈f ,ψj〉.

As an example of an orthogonal function sequence, consider

ψj = cosπjx in 0 ≤ x ≤ 1.

Computing the inner product over the domain gives

〈cosπjx , cosπkx〉 =

1∫
0

cosπjx cosπkx dx

=

1∫
0

1

2
[cosπ(j − k)x + cosπ(j + k)x ] dx

=

1∫
0

1

2
[1 + cos 2πjx ] dx for j = k

=
1

2
for j = k

= 0 for j 6= k.

It is important to point out that orthogonality is defined over a specified physical domain. Consider, for
example the terms of the Fourier series

1 cos x sin x cos 2x sin 2x ...

These functions are orthogonal over the interval 0 ≤ x ≤ 2π, but are not all orthogonal over 0 ≤ x ≤ π.
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17.1.3 The projection operator

We have now established that it is possible to represent a time and spatially varying state in terms of a
time-dependent linear combination of spatially-varying, but time-independent trial functions ψj(x):

T (x , t) = a0(t)ψ0(x) + a1(t)ψ1(x) + ... , (17.2)

If this series has a finite number of terms, can define the projection operator PN as

PNT (x , t) = 〈T ,ψ0〉ψ0 + 〈T ,ψ1〉ψ1 + · · ·+ 〈T ,ψN〉ψN .

It is interesting to relate this projection of some function T onto the trial functions ψi to computing the
power spectrum of a signal, or quantifying the contribution (e.g., kinetic energy) of each mode to the
function T by its mode amplitude coefficient ai = 〈T ,ψi 〉.
We will sometimes find it convenient to write the trial function expansions in vector notation. Defining
the vector of trial functions as

ψ = [ψ0(x) ψ1(x) ... ψN(x)]

and the mode amplitude coefficients as

a = [a0(t) a1(t) ... aN(t)]T,

the truncated N-term trial function expansion (17.2) can be written as

TN(x , t) = ψa.

17.1.4 Gram-Schmidt orthogonalization

Let us consider a sequence of trial functions

φ0,φ1,φ2, ... and norm ‖φi‖ =
√
〈φi ,φi 〉.

We can create an orthonormal basis ψi which spans the subspace of X spanned by φi with the Gram-
Schmidt procedure. This technique is useful for eliminating redundant trial functions and simplifies the
process of projecting arbitrary functions onto these trial functions .

The arrangement of the initial sequence φi does not matter, and so we choose the first function and
normalize it over its domain

ψ0 =
φ0

‖φ0‖
so 〈ψ0,ψ0〉 = 1

Now compute the “portion” of the next function φ1 which is orthogonal to ψ0:

v1 = φ1 − 〈ψ0,φ1〉ψ0

so the inner product can be thought of as the mode amplitude or contribution of ψ0 to φ1. We normalize
the remainder to obtain the next function in our orthonormal sequence

ψ1 =
v1

‖v1‖
.

We can continue this process
v2 = φ2 − 〈ψ1,φ2〉ψ1 − 〈ψ0,φ2〉ψ0

and so obtain the Gram-Schmidt orthogonalization procedure

ψn =
vn
‖vn‖

with vn = φn −
n−1∑
k=0

〈ψk ,φn〉ψk = φn − Pn−1φn.
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17.1.5 SVD based orthogonalization

Consider the set of functions {φi (x)}Ii=1. We would like to find a new set of functions {ψj(x)}Jj=1 with
J ≤ I that form a basis for the space spanned by the φi , where the ψj are orthogonal under inner product

〈ψm,ψn〉 =

∫
Ω

ψm(x)ψn(x)w(x)dx .

To being, we recall the singular value decomposition of matrix A:

UΣVT = Am×n

with Um×m, Σm×n, and Vn×n. Writing out the arrays explicitly for the decomposition of a representative
3× 3 case U1,1 U1,2 U1,3

U2,1 U2,2 U2,3

U3,1 U3,2 U3,3

 σ1 0 0
0 σ2 0
0 0 σ3

 V1,1 V1,2 V1,3

V2,1 V2,2 V2,3

V3,1 V3,2 V3,3

T

=

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3


and so multiplying through by the singular values σi σ1

 U1,1

U2,1

U3,1

 σ2

 U1,2

U2,2

U3,2

 σ3

 U1,3

U2,3

U3,3

  V1,1 V2,1 V3,1

V1,2 V2,2 V3,2

V1,3 V2,3 V3,3

 =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3


Denoting

[vT ]i =

 Vi ,1

Vi ,2

Vi ,3


we see that [vT ]i are the linear combinations of the basis vectors ui , weighted by their corresponding
singular values σi , that produce the original vectors ai . Likewise, because of the orthogonality of the vi
(i.e., VTV = I) σ1

 U1,1

U2,1

U3,1

 σ2

 U1,2

U2,2

U3,2

 σ3

 U1,3

U2,3

U3,3

  =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 V1,1 V1,2 V1,3

V2,1 V2,2 V2,3

V3,1 V3,2 V3,3


we observe that the vi are the linear combinations of the original column vectors ai that give the ith
basis ui vector multiplied by its corresponding singular value σi

We reiterate important observation is that the eigenvectors ui corresponding to small-magnitude singular
values σi contribute little to the original vectors aj ; we note that because 〈ui , ui 〉 = 1, the magnitude of
elements must remain on the order of 1.

Now consider representing one of the new functions we see ψi (x) in terms of the functions we are given
φj(x)

ψj(x) = aj ,1φ1(x) + aj ,2φ2(x) + aj ,3φ3(x).

Taking the inner product with φ1 gives

〈ψj ,φ1〉 = aj ,1 〈φ1,φ1〉+ aj ,2 〈φ2,φ1〉+ aj ,3 〈φ3,φ1〉
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so if

A =

 〈φ1,φ1〉 〈φ1,φ2〉 〈φ1,φ3〉
〈φ2,φ1〉 〈φ2,φ2〉 〈φ2,φ3〉
〈φ3,φ1〉 〈φ3,φ2〉 〈φ3,φ3〉


we can write  σ1

 〈ψ1,φ1〉
〈ψ1,φ2〉
〈ψ1,φ3〉

 σ2

 〈ψ2,φ1〉
〈ψ2,φ2〉
〈ψ2,φ3〉

 σ3

 〈ψ3,φ1〉
〈ψ3,φ2〉
〈ψ3,φ3〉

  =

 A1,1V1,1 + A1,2V2,1 + A1,3V3,1 A1,1V1,2 + A1,2V2,2 + A1,3V3,2 A1,1V1,3 + A1,2V2,3 + A1,3V3,3

A2,1V1,1 + A2,2V2,1 + A2,3V3,1 A2,1V1,2 + A2,2V2,2 + A2,3V3,2 A2,1V1,3 + A2,2V2,3 + A2,3V3,3

A3,1V1,1 + A3,2V2,1 + A3,3V3,1 A3,1V1,2 + A3,2V2,2 + A3,3V3,2 A3,1V1,3 + A3,2V2,3 + A3,3V3,3


which, by comparing each array element-by-element finally implies

σj 〈ψj ,φi 〉 = Ai ,1V1,j + Ai ,2V2,j + Ai ,3V3,j

= 〈φi ,φ1〉V1,j + 〈φi ,φ2〉V2,j + 〈φi ,φ3〉V3,j

so σjψj = φ1V1,j + φ2V2,j + φ3V3,j

Likewise  σ1

 〈ψ1,φ1〉
〈ψ1,φ2〉
〈ψ1,φ3〉

 σ2

 〈ψ2,φ1〉
〈ψ2,φ2〉
〈ψ2,φ3〉

 σ3

 〈ψ3,φ1〉
〈ψ3,φ2〉
〈ψ3,φ3〉

  V1,1 V2,1 V3,1

V1,2 V2,2 V3,2

V1,3 V2,3 V3,3

 =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3


so again, comparing each side element-by-element,

σ1 〈ψ1,φi 〉Vj ,1 + σ2 〈ψ2,φi 〉Vj ,2 + σ3 〈ψ3,φi 〉Vj ,3 = Ai ,j

= 〈φi ,φj〉
so σ1ψ1Vj ,1 + σ2ψ2Vj ,2 + σ3ψ3Vj ,3 = φj .

The SVD method for class scalarfield

The MATLAB command

[U,S,V] = svd(A)}

returns a vector of scalarfield objects U representing the orthogonal basis for the vector of scalarfield
objects A of length m; S is a vector of singular values with the same dimensions as vector A and V is
an m ×m array such that if A is a row vector of scalarfield objects,

U = A*V

Note that the orthogonal basis functions are normalized using the scalarfield method

U = normalize(U)
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17.2 Numerical representations of basis function sequences

In our computational methods, the one-dimensional basis function components φi (x), ψj(y), are repre-
sented as vectors of the function values at a set of quadrature points x̂, ŷ, respectively. For example, in
the case of the function sequence {φi (x)}i=1,...,I , the n quadrature points are defined as the combination

of the unit interval endpoints and the n−2 roots of a shifted orthogonal Jacobi polynomial Jα+1,β+1
n−2 (x),

a polynomial sequence orthogonal with respect to inner product weight xα(1− x)β where Jα+1,β+1
0 = 1;

α = 0, 1, or 2, and corresponds to the slab, cylindrical, or spherical geometries, respectively (β = 0 in
this work). Equidistant points x̂k = k/n are used for periodic physical domains. In all cases, it is required
that n ≥ I + 2.

Fundamental to spectral projection methods is the definition of the basis functions. Orthogonal polyno-
mial sequences can be readily generated on the quadrature grid using recurrence formulas, and subse-
quently can be normalized numerically by quadrature. Likewise, we find it convenient to define a basis
function sequence by the solutions to These functions are orthogonal with respect to the quadrature-
based inner product operations and are typically normalized prior to use. Eigenfunctions of this form are
automatically generated in the BasisFun object constructor.

17.2.1 basisfun: basis function class

One of the key elements of implementing a global spectral projection discretization method is defining the
basis functions. The basisfun object class was created to store basis function sequences, eigenvalue arrays
(if the basis functions are eigenfunctions), and the physical domain over which the basis functions are
defined (a quadgrid object). Each basis function in each sequence is discretized at the quadrature points
of the quadgrid object; the basis functions themselves can be approximate solutions to a Sturm-Liouville
problem or can be generated from a recurrence relation or other means.

In multidimensional applications, a single basisfun object is used to store all basis function sequence
components, and this basisfun object is created using the overloaded ∗ operator. For example, if

object Phi = {φi (x)}i=1,...,I

object Psi = {ψj(y)}j=1,...,J

object P = objects Phi ∗ Psi = {φi (x)ψj(y)}i=1,...,I ,j=1,...,J

Having described methods for creating basisfun objects, the most important method of the class is the
weighted inner product method wip.m. This method is used to project scalar field (scalarfield) objects
onto basis function sequences, and to compute inner products of basis function sequences with other
sequences; further information can be found in the table below and in the representative applications
found in the remainder of this chapter.
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basisfun
quadgrid : quadgrid or relquad
fun : double
eigv : double
name : char cell array
basisfun(X,fun,eigv,name)
bs2sf(A,indices)
display(A)
eig(A)
even(A)
get(A,field)
modes(A,modeno)
mtimes(A,B)
odd(A)
truncate(A,N)
truncno(A)
wip(A,B)

basisfunlegendre
basisfun : basisfun
option : char
N : double
basisfunlegendre(X,coname,option,N)
display(A)

basisfunperiodic
basisfun : basisfun
basisfunperiodic(X,coname)
display(A)

17.3 Sturm-Liouville problems

We encounter the eigenvalue problem
Au = λu (17.3)

as part of the solution procedure for time-invariant linear sets of ODEs. Recall that the eigenvectors
u are found as nontrivial solutions to (17.3) and that the u define an orthogonal basis for the vector
space where snapshots of solutions to the ODE system exist. In this chapter we consider the analogous
eigenvalue problem

Av(x) + λv(x) = 0 (17.4)

which defines the eigenfunctions v for specific forms of the linear operator A and (homogeneous) boundary
conditions for v(x).

Eigenfunction expansions are used to solve time-dependent, linear, nonhomogeneous boundary value
problems. The method is simple and intuitively straightforward to implement, and the eigenfunction and
eigenvalues frequently have physically meaningful interpretations. Eigenfunctions also provide a natural
basis for trial function expansions when used in conjunction with the Galerkin and other projection
methods to solve nonlinear problems.
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An important set of eigenvalue problems in the form of (17.4) are defined by the class of second-order,
regular, Sturm-Liouville problems defined by

1

xαv(x)

d

dx

(
xαp(x)

dψ

dx

)
+ q(x)

dψ

dx
+ g(x)ψ = λψ x ∈ (0, 1). (17.5)

The solutions ψ(x) are subject to boundary conditions

a
dψ(0)

dx
+ bψ(0) + a1

dψ(1)

dx
+ b1ψ(1) = 0,

c
dψ(1)

dx
+ dψ(1) + c0

dψ(0)

dx
+ d0ψ(0) = 0. (17.6)

Therefore, homogeneous forms of the Dirichlet (zero value), Neumann (zero diffusive flux), mixed, pe-
riodic, and semiperiodic boundary conditions can be satisfied. Eigenvalue problems in this form are
considered regular in the unit interval if

1. p(x) and v(x) do not vanish inside the unit interval;

2. 1/p(x), g(x), and v(x) are locally integrable near the endpoints.

The format of the Sturm-Liouville problems to be solved (17.5) was chosen to reflect the form commonly
encountered when solving boundary-value problems generated from conservation equations describing
the transport of mass, momentum, or energy in engineering modeling problems. In this form, p(x) can
represent a spatially-dependent diffusivity, q(x) the contribution of a convective flux, g(x) a spatially
nonuniform potential or heat transfer rate, and v(x) a nonuniform capacitive term. The exponent α
is related to the problem symmetry: α = 0 for slabs, α = 1 for cylindrical geometries, and α = 2 for
spherical geometries. It is possible for g(x) to have more than one finite-jump discontinuity. Finally, we
note that the boundary-value problem (17.5) is defined over the unit interval; all problems can be scaled
in this way and so this definition poses no limitations.

17.3.1 Orthogonality of eigenfunctions

Eigenfunctions computed as the nontrivial solutions to (17.5) satisfying boundary conditions (17.6) will
be orthogonal with respect to weighted inner product

〈ψi (x),ψj(x)〉W =

∫ 1

0

ψi (x)ψj(x) W (x)xα dx (17.7)

with

W (x) = v(x) exp

{∫ x

0

[v(x ′)q(x ′)/p(x ′)] dx ′
}

.

17.3.2 A simple example

To prove the orthogonality of the eigenfunctions, consider one of the simplest forms of the eigenvalue
problem (17.4):

d2v

dx2
− λv = 0 over 0 < x < 1
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subject to boundary conditions
dv(0)/dx = dv(1)/dx = 0.

This corresponds to the case of α = 0 and W (x) = 1 in (17.7). It is not hard to show that the solutions
v(x) = ψn(x) to the eigenvalue problem are the eigenfunctions ψn(x) = cos

(√
−λnx

)
with λn = −n2π2;

it has been shown previously (Section 17.1.2) that the eigenfunctions are orthogonal under (17.7) using
the inner product definition.

The orthogonality property can be obtained directly from the eigenvalue problem itself: consider the two
solutions ψi and ψj

d2ψi

dx2
− λiψi = 0

d2ψj

dx2
− λjψj = 0

Multiplying the first equation by ψj and the second by ψi and subtracting the two gives

(λi − λj)ψiψj = ψj
d2ψi

dx2
− ψi

d2ψj

dx2

=
d

dx

(
ψj

dψi

dx

)
− dψj

dx

dψi

dx
− d

dx

(
ψi

dψj

dx

)
+

dψi

dx

dψj

dx

=
d

dx

[
ψj

dψi

dx
− ψi

dψj

dx

]
(λi − λj)

∫ 1

0

ψiψj dx =

[
ψj

dψi

dx
− ψi

dψj

dx

]1

0

= 0

The final equality is true because

dψi (0)/dx = dψj(0)/dx = dψi (1)/dx = dψj(1)/dx = 0.

Because we have assumed that λi 6= λj , the functions ψi and ψj are orthogonal in terms of the inner
product (17.7):

(λi − λj)
∫ 1

0

ψiψj dx = 〈ψi ,ψj〉 = 0, i 6= j .

17.3.3 The case q(x) = 0

We now consider the eigenvalue problem (17.5-17.6) when q(x) = 0. Again, the two solutions ψi and
ψj correspond to distinct values of the eigenvalues λi and λj , i.e.,

d

dx

(
xαp(x)

dψi

dx

)
+ xαv(x)g(x)ψi − xαv(x)λiψi = 0

d

dx

(
xαp(x)

dψj

dx

)
+ xαv(x)g(x)ψj − xαv(x)λjψj = 0
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Multiplying the first equation by ψj and the second by ψi and subtracting the two gives

(λj − λi )xαv(x)ψiψj = ψj
d

dx

(
xαp

dψi

dx

)
− ψi

d

dx

(
xαp

dψj

dx

)
=

d

dx

[
xαpψj

dψi

dx
− xαpψi

dψj

dx

]
.

This can be shown by carrying out the differentiation of the left sides of each of the above equations.
Integrating over the unit interval then gives

(λj − λi )
∫ 1

0

ψiψjx
αv(x) dx =

[
xαp

(
ψj

dψi

dx
− ψi

dψj

dx

)]1

0

For this problem, consider the case a1 = b1 = c0 = d0 =, a simplification that eliminates only periodic
boundary conditions. In the case of a = c = 0, the right-hand-side of the equation above vanishes as-is.
For p, a, c 6= 0, solving the boundary conditions for the derivative terms gives

ψ′(0) = −b

a
ψ(0) ψ′(1) = −d

c
ψ(1)

and so evaluating the right-hand-side of the integrated equation gives[
ψj(1)

(
−d

c
ψi (1)

)
− ψi (1)

(
−d

c
ψj(1)

)]
[xαp]1

−
[
ψj(0)

(
−b

a
ψi (0)

)
− ψi (0)

(
−b

a
ψj(0)

)]
[xαp]0 = 0.

Because we have assumed that λi 6= λj , the functions ψi and ψj are orthogonal relative to the weight
function

W (x) = v(x).

This concludes the proof that φi and ψj are orthogonal under the weighted inner product for distinct λi
and λj :

(λj − λi )
∫ b

a

ψiψjW (x)xα dx = 〈ψi ,ψj〉W = 0.

We will see that weight functions frequently have physical meaning. For example, W (r) = v(x) represents
the fluid velocity field in the Graetz problem, a case study to be discussed later in this text.

17.3.4 Completeness

Having established the orthogonality of ψn, an even stronger statement can be made

Theorem (Sturm-Liouville) Let p(x), q(x), and W (x) be regular functions (can be
represented pointwise by a convergent power series) for x ∈ (a, b), and let p(x) and and
W (x) be positive for x ∈ [a, b]. For ψi satisfying homogeneous boundary conditions, if
function f (x) is bounded and piecewise differentiable for x ∈ (a, b), the series

f (x) =
∞∑
n=0

anψn(x) with an =
〈f ,ψn〉W
〈ψn,ψn〉W

=
〈f ,ψn〉W
‖ψn‖2

W
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converges to f (x) in (a, b) where f is continuous, and to 1
2 [f (x−) + f (x+)] where a finite

jump occurs.

Thus, a consequence of this theorem is that the sequence {ψn}∞n=0 is said to be complete, because we
can find no nontrivial function f (x) whose Fourier constants an all vanish.

17.3.5 Basis functions computed as solutions to a Sturm-Liouville problem

Consider computing solutions tp Sturm-Liouville problems over x0 < x < x1 in the form

1

xα
d

dx
xα

dφ

dx
= λφ

subject to

a
dφ(x0)

dx
+ bφ(x0) = 0

c
dφ(x1)

dx
+ dφ(x1) = 0.

A class derived from the basisfun class has been developed to create a basisfun object containing
basis functions in the form of eigenfunctions corresponding to the problem above.

basisfunsl
basisfun : basisfun
a : double
b : double
c : double
d : double
basisfunsl(X,coname,a,b,c,d)
display(A)

We can demonstrate the use of this class with the example given in Section 17.3.2; we first set up the
physical domain (that includes the endpoints): 0 ≤ x ≤ 1 and then compute and truncate the basis
(eigen)functions:

>> X = quadgrid(’slab’,40,’x’,[0,1]);

>> P = basisfunsl(X,’x’,1,0,1,0);

>> P = truncate(P,5);

>> plot(P)

As can be seen in Fig. 17.2, the first five eigenfunctions clearly are cos nπx , n = 0, ... , 4.

Furthermore, we can assess the accuracy of the eigenvalues computed using the numerical procedure by
dividing each by π2; the result should be −n2, n = 0, ... , 4:

>> eig(P)/pi^2

ans =

-0.0000

-1.0000

-4.0000

-9.0000

-16.0000
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Figure 17.2: First five normalized eigenfunctions computed using basisfunsl.m.

Finally, the orthogonality of the eigenfunctions is established by computing the weighted inner product
of all the eighenfunctions with all eigenfunctions:

>> wip(P,P)

ans =

1.0000e+00 3.1764e-14 -1.4319e-14 -6.8658e-15 -3.1489e-16

3.1781e-14 1.0000e+00 4.7296e-15 -2.0335e-15 -1.1423e-16

-1.4335e-14 4.7774e-15 1.0000e+00 -1.3995e-14 -2.9135e-15

-6.9046e-15 -2.0388e-15 -1.3963e-14 1.0000e+00 -1.3745e-14

-2.9882e-16 -1.3842e-16 -2.9059e-15 -1.3737e-14 1.0000e+00

From the matrix above, we observe that all off-diagonal elements approach round-off error and all diagonal
elements are unity, indicating the eigenfunctions are indeed orthonormal.

17.3.6 Another example

Consider the eigenvalue problem

d2ψ

dz2
+ λ2ψ = 0 over 0 < z < L

subject to boundary conditions

Peψ(0)− dψ(0)

dz
= 0 and

dψ(L)

dz
= 0.

For this problem it is easy to see that

ψn(z) = An sinλnz + Bn cosλnz

satisfies the eigenvalue differential equation. Substituting this function into each of the boundary condi-
tions gives

PeBn cosλn + Anλn cosλn = 0

−Anλn cosλnL + Bnλn sinλnL = 0
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Defining Cn = An/Bn we find from the first equation Cn = −Pe/λn and so the second equation provides
the nonlinear relationship for the eigenvalues

Pe cosλnL + λn sinλnL = 0 =⇒ Pe + λn tanλnL = 0.

Computing solutions to the equation above gives the sequence of orthogonal basis functions

ψn = An

[
sinλnz − λn

Pe
cosλnz

]
.

17.4 The Galerkin projection

Applications of the eigenfunction expansion technique are limited to certain linear distributed parameter
systems. The Galerkin technique introduced in this section can be seen as an extension of the eigenfunc-
tion expansion to nonlinear systems. Its applicability is increase by choosing to express the solution in
terms of trial functions other than the eigenfunctions of the linearized system.

Consider a truncated eigenfunction expansion solution to the nonhomogeneous, linear problem

∂u

∂τ
= L(u) + F (x , τ)

subject to the homogeneous boundary conditions. If we think of F as resulting from the linearization
of a nonlinear function N(u) at some solution profile u(x , τ̂), the eigenfunctions ψn will not change and
F will exist in the function space spanned by the ψn. The conclusion we reach is that if the linearized
system possesses a particular solution (determined by the initial condition u(x , τ̂)), the nonlinear system
should have a solution that can be expressed in the form

uN(x , τ) =
N∑

n=1

an(τ)ψn(x). (17.8)

Substituting the truncated eigenfunction function expansion uN into the nonhomogeneous problem and
approximating the forcing function by the eigenfunction expansion F =

∑
fnψn gives the residual

RN(x , τ) =
N∑

n=1

ȧn(τ)ψn(x) +
N∑

n=1

λnan(τ)ψn(x)−
N∑

n=1

fn(τ)ψn(x).

Minimizing the square of the residual 2-norm ‖RN‖2
2 means minimizing

N∑
n=1

[ȧn(τ) + λnan(τ)− fn(τ)]2

(by the orthogonality of the ψn) which gives the conditions

ȧn(τ) + λnan(τ)− fn(τ) = 0 n = 1, ... , N

that must be solved to drive the residual to zero. We note that this formulation is equivalent to

〈u̇N ,ψm〉w = 〈L(uN),ψm〉w + 〈F ,ψm〉w
ȧm = −λmam + 〈F ,ψm〉w/〈ψm,ψm〉w .
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We can generalize the last idea by considering particular solutions to

∂u

∂τ
= G (u)

of the form (17.8). Because the trial functions ψn are chosen as the eigenfunctions of the homogeneous,
linearized problem with linear, homogeneous boundary conditions, any linear combination of the trial
functions ψn will also satisfy the boundary conditions of the problem u̇ = G (u). This means we need not
further consider the role of boundary conditions in this problem. The coefficients an(τ) are governed by
the set of (possibly nonlinear) ordinary differential equations in time

dan
dτ

= g(a, τ), n = 0, ... , M, a = [a1, ... , aM ]T

determined so that the residual

R(x , τ) =
∂

∂τ

N∑
n=1

an(τ)ψn(x)− G

(
N∑

n=1

an(τ)ψn(x)

)
is minimized, subject to the initial conditions an(τ = 0). This minimization is in the 2-norm sense, and
so we wish to determine

min
a1,...aN

‖R‖2
2

for any specified M. We develop the Galerkin procedure in two steps. First, because the ψn are complete,
they can approximate any function in the function space they span, and so we can write the convergent
series

RN(x , τ) =
N∑
i=1

bi (τ)ψi (x).

It is important to stress that if we can drive the truncated, trial function expansion approximation to the
residual to zero, we will also force the true residual R to zero.

We can now determine the coefficients bn with the standard procedure of minimizing the norm

D =
∥∥∑

i

biψi −R
∥∥2

2

over bn, giving

bncn = 〈R,ψn〉w or bn =
〈R,ψn〉w
〈ψn,ψn〉w

.

This residual can be minimized by driving as many of the coefficients bn to zero as possible, and so with
the first N eigenfunctions we can write

〈R,ψn〉w =
∂

∂τ
ancn − 〈L(u),ψn〉w − 〈N(u),ψn〉w

=
∂

∂τ
ancn + λnancn − 〈N(u),ψn〉w

= 0

and so integrating the ordinary differential equations in time

dan
dτ

= −λnan +
〈N(u),ψn〉w
〈ψn,ψn〉w

n = 0, ... N

subject to initial conditions 〈u,ψn〉w = 〈u0,ψn〉w minimizes the residual.
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17.4.1 Accuracy

Consider the particular solution to
∂u

∂τ
= G (u) in Ω (17.9)

subject to boundary and initial conditions. If uN =
∑N

n=0 anψn and satisfies the boundary conditions for
all combinations of the mode amplitudes a, two sources of simulation error can be identified:

1. A residual can be defined as R(x , t) = u̇N −G (uN). This measures the time rate of change of the
error in the state profile u(x , t). If the scalar quantity

R̂(t) = ‖u̇N − G (uN)‖

is significantly smaller than a representative quantity, such as ‖u(x , t)‖, we can consider this to be
an accurate general solution. Simulation error then depends on the accuracy of the integrator.

2. An accurate particular solution has an accurate general solution and accurately captures the initial
condition u0(x)

‖uN(x , t = 0)− u0(x)‖ → 0 as N →∞

In addition to the accuracy criteria above, we can pose other measures of simulation accuracy, such as
whether the solution explicitly conserves certain quantities (e.g., mass or energy).

17.5 Assessing discretized solution accuracy

The overall process for assessing the accuracy of a numerical simulation is to

1. Determine the accuracy of the numerical solution relative to the original modeling equations; and
if the numerical solution is accurate, then

2. Assess whether the modeling equations accurately represent the physical phenomena under study.

Unfortunately, many computational studies do not directly address the first step, or at least do not provide
details justifying the assumption that computed solutions accurately portray solutions to the modeling
equations. In this Chapter, we take a closer look at assessing the accuracy of some of our computed
solutions.

17.6 The Gibb’s phenomenon and filtering

Solutions to boundary-value problems (BVPs) with spatially discontinuous forcing terms can exhibit poor
convergence performance when the solutions are represented by a smooth, continuous, globally defined
basis function expansion. Likewise, initial conditions that do not satisfy the problem boundary conditions,
or discontinuities in the boundary conditions themselves, can result in solutions with non-diminishing
oscillations characteristic of the Gibbs phenomenon. Even in cases where satisfactory solutions are found,
accurate computation of secondary quantities, such as a flux at a specified spatial location, can be
affected by the Gibbs oscillations both near to and away from the discontinuity.



CHAPTER 17. ORTHOGONAL FUNCTION SEQUENCES 188

To reduce the effects Gibbs oscillations have on solutions to BVPs, we will incorporate recent devel-
opments in spectral filtering methods in collocation discretization procedures based on globally defined
trial function expansions. We take advantage of the computational methods that make possible very
high discretization degrees developed in previous chapters, and use the filtering methods as a means of
improving discretization method convergence performance, rather than the more traditional application
as a post-processing step. We consider global polynomial collocation for time integration of the nonlinear
CVD thermal dynamics model as a representative test case for the numerical methods presented in this
chapter.

To illustrate basic issues in spectral filtering and the convergence of global polynomial approximations,
consider projecting the piece-wise continuous function defined on the unit interval:

f (t) =

{
0 0 ≤ t < 0.55
1 0.55 < t ≤ 1

(17.10)

onto the sequence of trial functions ψn+1(t) = Pn(t)/
√

cn where the shifted Legendre polynomials Pn(t)
are defined by the recurrence formula

(n + 1)Pn+1(t) = (2n + 1)(2t − 1)Pn(t)− nPn−1(t) (17.11)

with P0(t) = 1 and P1(t) = 2t − 1. The resulting sequence of functions is orthogonal with respect to
inner product

〈Pm, Pn〉 =

∫ 1

0

Pm(t)Pn(t) dt = cnδm,n

with cn = 1/(2n + 1). Examining the projection fN(t) of f (t) onto the space spanned by the ψn(t),
n = 1, ... , N

fN(t) =
N∑

n=1

anψn(t) (17.12)

with
an = 〈f (t),ψn(t)〉,

we find the expected Gibbs phenomenon (Fig. 17.3). Three important features are observed in the pro-
jection results. First, oscillatory overshoot behavior near the discontinuity does not vanish with increasing
truncation number N, but asymptotically approaches a constant value of approximately 8.949% of the
jump magnitude [13] as N grows large. Second, the oscillatory effects are exhibited far from the disconti-
nuity: for this problem, pointwise convergence away from the discontinuity and the interval endpoints is
of order 1/N, while at the endpoints convergence is proportional to 1/

√
N (cf. the exponential conver-

gence when f (t) is continuous). The slower convergence rate near the endpoints is directly attributable
to the property of the polynomial sequence—that

|Pn(t)| < 1, 0 < t < 1

but
Pn(0) = (−1)n, Pn(1) = 1.

A third observation comes from comparing consecutive projections fN−1 and fN (Fig. 17.3). When the
ψn are taken from an orthogonal sequence, the oscillations tend to become out of phase away from
the discontinuity, and the features near the discontinuity show little change. Therefore, we can average
the two consecutive projections in the hope of obtaining better pointwise convergence performance.
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Figure 17.3: Gibbs oscillations in two consecutive projections (left) for N = 15; first-order filtered results
(right).

Continuing this averaging operation on the partial sums extends the smoothing behavior towards the
discontinuity (Fig. 17.3, right). This averaging operation can be expressed by rewriting the partial sum
(17.12) in terms of the spectrally filtered form

f σN (t) =
N∑

n=1

anσnψn(t)

with the σn derived to give the equivalent to the arithmetic mean of the partial sums fn, n = 1, ... , N
(the Cesaro sum):

σn = 1− n − 1

N
= 1− η

with η = (n − 1)/N. A more uniform, but still slow, pointwise convergence rate was observed and
discussed in [1]. In fact, for the representative point chosen in that study, the average partial sum
converges at essentially the same rate (but more uniformly) as the non-filtered projection.

17.6.1 Filters

The averaged partial sum filter belongs to the class of first-order filters; a filter of order p is a C p−1

function whose first p − 1 derivatives vanish at η = 0; specific definitions can be found in [14]. In the
cited reference, it was shown that higher-order filters can provide better point-wise convergence when
the filter order grows with truncation number N. One such filter is the Vandeven filter [28], derived to
produce exponential pointwise convergence of the filtered partial sums away from the discontinuity for
periodic functions:

σ(η) = 1− (2p − 1)!

(p − 1)!2

∫ η

0

[s(1− s)]p−1 ds

= 1− (2p − 1)!

(p − 1)!2

[
ηp

p
+

p−1∑
n=1

(−1)n(p − 1)!

n!(p − 1− n)!

ηn+p

n + p

]
.
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Figure 17.4: A binomial physical-space filter for N = 18.

To study the potential improvements in pointwise convergence when using the higher-order filters, we
examined |f (t0)− f σN (t0)| as a function of truncation number N and filter order p for the representative
point t0 = 0.4 in [1]. It was observed that convergence for the second-order filter is, in general, better
than the other filter orders for N < 65. For higher truncation number values, the eighth-order filter gives
improved convergence at the point t0, a result consistent with [14].

17.6.2 Physical-space filters

For use with the collocation discretization techniques discussed in previous chapters, it makes sense
to consider the physical space equivalents to the spectral filters; these physical space equivalents and
“composite” versions were discussed in detail in [1]. Likewise, physical space filters with no direct spectral
filter counterpart were discussed, such as the simple binomial filter, commonly used for image processing
applications [17]. It is defined by

Pb
sp(i , i) = 1 for i = 1, N

Pb
sp(i , i − 1) = Pb

sp(i , i + 1) = 1/4, Pb
sp(i , i) = 1/2 for i = 2, ... , N − 1

The filter is shown in Fig. 17.4. We note that higher-order binomial filters, necessary for cases where
stronger filtering is required, can be obtained by repeated applications of this filter, i.e., (Pb

sp)2, (Pb
sp)3,

and so on. We will refer to (Pb
sp)n as a binomial filter of order n.

The binomial filter produced improved convergence near the interval endpoints and the reduced overshoot
near the discontinuity. Results for he binomial filter are presented in Fig. 17.5
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Figure 17.5: Unfiltered and filtered collocation approximations to the step function demonstrating the
filtering achieved with various orders of binomial filters.



Chapter 18

Polynomial collocation for
nonlinear/linear BVPs

Only global polynomial interpolation methods will be discussed in this chapter. While there are numerous
methods for representing curves or interpolating data points with locally defined functions, (such as the
spline methods), we will focus only on the global methods to be consistent with the later chapters on
global spectral methods.

18.1 Polynomial interpolation and quadrature

An important application of polynomial interpolation methods is in the analysis and use of experimental
data that is represented in the form of a set discrete measurements. Consider data tabulated in the
following form:

x T (K)
x1 T1

x2 T2

x3 T3

...
...

xN+1 TN+1

Our objective is to find the interpolating polynomial

T (x) = a0 + a1x + a2x2 + ... aNxN =
N∑

n=0

anxn (18.1)

using the experimental data. We note the following:

1. At least N + 1 data points (xi , Ti ) are required to define (18.1);

2. The polynomial (18.1) is said to have degree N; the number of roots of a (non-zero) polynomial
and the degree of the polynomial are equal.

192
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18.1.1 Uniqueness of the interpolating polynomial

A unique interpolating polynomial curve results in the case where N + 1 independent experimental
measurements are available to define (18.1). If this were not the case, it would be possible to define at
least two different polynomials

T a(x) =
N∑

n=0

anxn and T b(x) =
N∑

n=0

bnxn

that pass through the same set of points (xi , Ti ), i = 1, ... , N + 1. Subtracting term-by term gives a
third polynomial

Pc(x) =
N∑

n=0

(an − bn)xn =
N∑

n=0

cnxn

which must now pass through the points (xi , 0), i = 1, ... , N +1. Because a degree N non-zero polynomial
can have only N zeros, the only possible polynomial for Pc is the zero polynomial, forcing an = bn for
all n.

18.1.2 The Vandermonde array

For relatively low-degree polynomials (e.g., N > 10), the polynomial coefficients can be calculated
directly. Given M ≥ N + 1 data points,

VM×N+1aN+1×1 = TM×1 (18.2)

with
Vm,n = xn−1

m m = 1, ... , M, n = 1, ... , N + 1

and x1 < x2 < · · · < xM . A least-squares solution procedure must be used when M > N + 1.

The array V is a Vandermonde array; it is possible to write an explicit equation for the determinant
of this array and to show that the determinant is never zero [27] when the points xi are unique. This
means V is always invertible (for unique xi ); however, for finite-precision computations, the array becomes
numerically singular for (approximately) M > 12, making the direct computation of the coefficients ai
impractical for large M.

18.2 Lagrange interpolation

A more direct approach in the case M = N +1 involves the use of the Lagrange interpolation polynomials.

Consider the following polynomial:

li (x) =
(x − x1)(x − x2) ... (x − xi−1)(x − xi+1) ... (x − xM)

(xi − x1)(xi − x2) ... (xi − xi−1)(xi − xi+1) ... (xi − xM)
=

ΠM
j=1,j 6=i (x − xj)

ΠM
j=1,j 6=i (xi − xj)

(18.3)

which has the following property:

li (x) =

{
1 if x = xi
0 x = xj , j = 1, ... , M, j 6= i
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The polynomial li (x) is known as the Lagrange building block polynomial. In this formulation, the
interpolating polynomial can be written directly as

TM(x) =
M∑
i=1

li (x)Ti . (18.4)

The importance of the polynomial uniqueness theorem discussed in Section 18.1.1 is that for M = N + 1
data points, the following polynomials are identical, both at the interpolation points and in between:

T (x) = a0 + a1x + a2x2 + · · ·+ aNxN

= l1(x)T1 + l2(x)T2 + · · ·+ lM(x)TM

where the aj are computed using the Vandermonde array (18.2).

18.2.1 Runge’s divergence phenomenon

It can be observed that interpolation polynomials can behave extremely badly when the data points have
equidistant abscissae. This can be traced directly to the building block polynomials; an example for
M = 11 interpolation points is shown in Fig. 18.1, where we note the large deviation in the building
block polynomials towards the interval endpoints. Spacing the interpolation points in such a way that the
density increases towards the interpolation interval endpoints produces considerably better polynomial
behavior.

18.3 Neville’s algorithm

It is computationally more efficient and accurate to use the interpolation methods in an interated fashion.
Following the derivation presented by Stroud [27], we begin the derivation of Neville’s algorithm by
defining the value of P(x) at x of an n degree polynomial that interpolates the points x1, x2, ... , xn+1 as

Pn(x ; x1, x2, ... , xn+1).

In general, this value can be computed by interpolating the two n − 1 degree polynomials:

Pn(x ; xi , xi+1, ... , xi+n) =
(xi+n − x)Pn−1(x ; xi , xi+1, ... , xi+n−1)− (xi − x)Pn−1(x ; xi+1, xi+2, ... , xi+n)

xi+n − xi

For example,

P2(x ; x1, x2, x3) =
(x3 − x)P1(x ; x1, x2)− (x1 − x)P1(x ; x2, x3)

x3 − x1

Therefore, if

x = x1 P2(x1; x1, x2, x3) = P1(x1; x1, x2) which is correct,

x = x3 P2(x3; x1, x2, x3) = P1(x3; x2, x3) which is correct,

x = x2 P2(x2; x1, x2, x3) =
(x3 − x2)P1(x2; x1, x2)− (x1 − x2)P1(x2; x2, x3)

x3 − x2
.
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Figure 18.1: Comparison of building block polynomials for equidistant data points (top) and the polyno-
mials produced when the roots of a Chebyshev polynomial are used for the abscissa points (bottom).

The last equality also is valid because P1(x2; x1, x2) = P1(x2; x2, x3).

What is produced by this algorithm is a table that is filled in from left to right; for the CVD example,
the table would look like the following:

x1 P0(x ; x1) = T1 0 0 0 0
x2 P0(x ; x2) = T2 P1(x ; x1, x2) 0 0 0
x3 P0(x ; x3) = T3 P1(x ; x2, x3) P2(x ; x1, x2, x3) 0 0
x4 P0(x ; x4) = T4 P1(x ; x3, x4) P2(x ; x2, x3, x4) P3(x ; x1, x2, x3, x4) 0
x5 P0(x ; x5) = T5 P1(x ; x4, x5) P2(x ; x3, x4, x5) P3(x ; x2, x3, x4, x5) P4(x ; x1, x2, x3, x4, x5)

which for the case of x = 0.2 gives:

0 672.6700
0.4 626.6700 649.6700
0.6 602.3300 651.0100 650.1167
0.8 577.3300 652.3300 650.3500 650.1750
1 553.3300 649.3300 655.3300 648.6900 649.8780
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18.4 Discrete differentiation operations

There are many cases where the derivative of an interpolation polynomial is necessary (such as the
Newton procedure described in the following section):

dTM(x)

dx
=

M∑
i=1

dli (x)

dx
Ti .

Rather than computing dli/dx directly from the definition of the building block polynomials, we make
use of the uniqueness theorem (Section 18.1.1) to simplify the computations. First, consider the case
M = N + 1 and writing

TM(x) =
M∑

m=1

lm(x)Tm

TM(xi ) =
M∑

m=1

lm(xi )Tm

or in matrix form

T = LT

= IT.

The equivalence of the L and identity arrays follows from the definition of the building block polynomials.
Using the uniqueness theorem, we can write the equivalent discretized system:

T = LT = Va

so making use of the invertability of the Vandermonde array,

a = V−1T

Defining the column vector dT/dx with the elements dT (xi )/dx we can write discrete ordinate formu-
lation:

dT

dx
=

d

dx
Va

=

[
d

dx
V

]
V−1T

= AT

where the elements of dV/dx are defined by

dVi ,j

dx
= (j − 1)x j−2

i , j 6= 1

= 0, j = 1

We note that besides any roundoff errors, this computation is exact because the derivative operations
reduce the degree of the polynomial, and so no accuracy is lost in the discrete representation of the
derivative curve.
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18.5 Quadrature

Just as with differentiation, we would like to be able to evaluate the integral

∫ xM

x1

f (x) dx =
M∑
i=1

xM∫
x1

li (x) dx f (xi )

=
M∑
i=1

wi f (xi )

in a discrete fashion, where the wi are known as the quadrature weights defined as

wi =

xM∫
x1

li (x) dx .

As in the case of the discretized differentiation operation, we want to avoid direct integration of the
Lagrange polynomial. Returning to the CVD temperature example, the procedure follows the derivation
of [12] and begins by defining the Taylor’s series expansion for the temperature function T (x):

T (x) = T (0) + xT ′(0) +
x2

2
T ′′(0) +

x3

6
T ′′′(0) + · · ·+ xn

n!
T n(0) + ...

where T n(x) denotes the nth derivative of T (x). Integrating over the range [x1, xM ], the exact and
quadrature results can be written as

xM∫
x1

T (x) dx = (xM − x1)T (0) +
(x2

M − x2
1 )

2
T ′(0) +

(x3
M − x3

1 )

6
T ′′(0) + · · ·+ (xn

M − xn
1 )

n!
T (n−1)(0) + ...

=
M∑

m=1

wmT (0) +
M∑

m=1

wmxmT ′(0) +
M∑

m=1

wm
1

2
x2
mT ′′(0) + · · ·+

M∑
m=1

wm
xn−1
m

(n − 1)!
T (n−1)(0) + ...

Equating like coefficients of T n gives

M∑
m=1

wm = xM − x1

M∑
m=1

wmxm =
1

2
(x2

M − x2
1 )

...
M∑

m=1

wm
xn−1
m

(n − 1)!
=

(xn
M − xn

1 )

n!

...
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or

VTw =


xM − x1

...
xn
M − xn

1

n
...


which can be solved for the quadrature weights w.

18.6 High-degree interpolation

Using Lagrange interpolation directly or Neville’s algorithm is impractical for high degree polynomials
(e.g., greater than 10). Instead, we take the following approach, which is based on the uniqueness
theorem. Consider representing a function T (x) over the interval x0 ≤ x ≤ x1 by a sequence of
Chebyschev ploynomials of degree n (pn(x)):

T (x) = a0p0(x) + a1p1(x) + a2p2(x) + a3p3(x) + ...

T (xi ) = a0p0(xi ) + a1p1(xi ) + a2p2(xi ) + a3p3(xi ) + ...

= pT (xi )a

where the Chebyschev polynomials are generated by the recursive relationship

p0(x) = 1

p1(x) = 2(x − x0)/(x1 − x0)− 1

pn(x) = (4(x − x0)/(x1 − x0)− 2)pn−1(x)− pn−2(x)

If we have xi , i = 1, ... , I , we can write

T = PTa with Pi ,j = pi (xj)

and so interpolation to an arbitrary point xk ∈ [x0, x1] is

T (xk) = pT (xk)[PT ]−1T

18.6.1 2-dimensional interpolation

Now consider the two-dimensional polynomial expansion

T (x , y) = a0,0p0(x)q0(y) + a0,1p0(x)q1(y) + a0,2p0(x)q2(y) + ...

+a1,0p1(x)q0(y) + a1,1p1(x)q1(y) + a1,2p1(x)q2(y) + ...

+a2,0p2(x)q0(y) + a2,1p2(x)q1(y) + a2,2p2(x)q2(y) + ...

= pT (x)Aq(y) Ai ,j = ai ,j

and so if our solution is known at the grid points (xi , yj),

T = PTAQ

and so at the arbitrary point (xk , yl)

T (xk , yl) = pT (xk)[PT ]−1TQ−1q(yl)
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18.6.2 Collocation discretization

The quadrature point (collocation) grid is defined first

z =


z1

z2

...
zM−1

zM

 =


0
z2

...
zM−1

1


on which the discretized dimensionless concentration vector x is defined such that xi = x(zi ); the discrete
differentiation arrays associated with quadrature grid z also are defined

A =
d

dz
B =

d2

dz2
.

Finally, we denote the i-th row of arrays A and B as Ai and Bi , respectively.

The collocation procedure consists of defining M collocation-discretized equations and solving the result-
ing system for x. The reactor inlet boundary condition can be approximated by the collocation-discretized
representation

1

Pe
A1x− x1 = −1. (18.5)

Similarly, the 2nd-order ordinary differential equation derived from the chemical species material balance
can be approximated as

1

Pe
Bjx− Ajx− Kxj = 0 j = 2, ... , M − 1 (18.6)

and the outlet boundary condition by
AMx = 0. (18.7)

The set of equations (18.5-18.7) define a set of linear equations that can be solved directly for the
steady-state conversion values at the collocation points.

18.6.3 Collocation solution error analysis

One method to assess the error generated by the collocation discretization approximation is to compute
the residual function of the collocation solution on a finer-scale quadrature grid. For the collocation
procedure above, let xM(z) be the polynomial function representing the M-point collocation solution.
If z̄ is the N-point finer quadrature grid (where N > M) and Ā and B̄ are the corresponding discrete
differentiation operations, the residual function on this finer grid is computed simply as

R =
1

Pe
B̄x̄− Āx̄− K x̄

where x̄ is the M-point solution interpolated to the finer quadature grid. This multiple-grid collocation
method is discussed in further detail in [2].
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18.7 Object classes for quadrature

18.7.1 quadgrid: quadrature grid class

When solving a problem using quadrature-based projection methods, one must recompute the differentia-
tion and quadrature arrays if the number of quadrature points is changed. The fixed relationship between
the quadrature points, differentiation and quadrature weight arrays, and coordinate axis names leads nat-
urally to encapsulating these data into a single object; this motivated developing the quadgrid object
class. Objects of this class contain a physical-space grid of quadrature points and the above-mentioned
arrays. No methods were created to modify the data fields of quadgrid objects once they are constructed;
a new quadgrid object must be created if any changes in geometry or grid size are needed. Methods
of this class include accessor (get.m), grid visualization (plot.m), and constructor methods. A quadgrid
object is aggregated into objects of every other class defined in this chapter.

quadgrid
geom : cell array of strings
qp : cell array of doubles
w : cell array of doubles
Q : cell array of doubles
Qinv : cell array of doubles
name : cell array of strings
d : cell array of doubles
dd : cell array of doubles
d2 : cell array of doubles
dd2 : cell array of doubles
colmat(A)
quadgrid(geom,ndisc,name,axlim,ptype)
compare(A,B)
display(A)
get(A,field,coname)
mask(A,shape,params)
mtimes(A,B)
normal(A,x)
plot(A)
qg2sf(A,coname)
quadrotshift(A,coname,shift)
size(A)

18.7.2 Computational example: creating objects of quadgrid class

On their own, objects of quadgrid class have very little utility; however, it is instructive to consider how
one constructs basic quadrature grids. Consider, for example, setting up a 10 point quadrature grid in
coordinate r with maximum and minimum values r ∈ [0, 0.5] with cylindrical symmetry:
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>> R = quadgrid(’cyln’,10,’r’,[0 0.5])

1st element of quadgrid object array "R" of size:

10

coordinate name(s) [limits] (geom):

r : [ 0 , 0.5 ] (cyln)

qp:

[10x1 double]

Now we extract the actual locations of the quadrature points using the quadgrid/get.m method:

>> Rqp = get(R,’qp’,’r’)

Rqp =

0

0.0048

0.0421

0.1111

0.2012

0.2988

0.3889

0.4579

0.4952

0.5000

The quadrature point location double arrays are stored inside a cell array is to allow for higher-dimensional
quadrature grids; if X, Y, and Z are 1-dimensional quadrature grid objects, 2- and 3-dimensional quadra-
ture grids simply are constructed using the overloaded ∗ (mtimes.m) method:

>> T = quadgrid(’peri’,31,’t’,[0 2*pi]);

>> Z = quadgrid(’slab’,15,’z’,[0 1]);

>> subplot(2,2,1), plot(R)

>> subplot(2,2,2), plot(R*Z)

>> subplot(2,2,3), plot(R*T)

>> subplot(2,2,4), plot(R*Z*T)

The plots produced by this script are shown in Fig. 18.2.

18.7.3 scalarfield: scalar field class

A scalarfield object represents a scalar function value defined on a quadrature grid; a scalarfield object
has data fields consisting of the function value at the quadrature points and the corresponding quadgrid
(or relquad) object itself. scalarfield objects frequently are used to represent distributed state variables
and residual functions evaluated on the quadrature grid in MWR applications.
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Figure 18.2: Plots indicating the locations of quadrature points for various geometries.

scalarfield
pd : quadgrid
val : double array
abs(A)
bpsf(A,n,dir)
cos(A)
display(A)
exp(A)
expand(A,pdNew)
get(A,field)
getbval(A,coordname,minmax)
getval(A,i,j,k,l)
interp(A,x,y)
linterp(A,codir,locat)
mean(A,coname)
minus(A,B)
mpower(A,n)
mrdivide(A,B)

mtimes(A,B)
mwrgs(phi,errtol)
normalize(A)
orth(A,srmin)
plot(A,...,lwidth,marker)
plus(A,B)
rdivide(A,B)
rq2qg(A)
scalarfield(pd,val)
setbval(A,B,coordname,minmax)
setval(A,newval,i,j,k,l)
sin(A)
substitute(A,B)
svd(A,errtol)
wip(A,B)
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18.7.4 Computational example: creating objects of scalarfield class

>> X = quadgrid(’slab’,20,’x’,[0 1]);

>> Y = quadgrid(’slab’,30,’y’,[0 3]);

>> sx = qg2sf(X); % create scalarfield equivalent to f(x) = x

>> sy = qg2sf(Y);

>> f = cos(2*pi*sx);

>> g = sin(2*pi*sy);

>> f = expand(f,X*Y); % expand f and g to 2-dim and plot

>> g = expand(g,X*Y);

>> subplot(2,2,1), plot(f)

>> subplot(2,2,2), plot(g)

>> subplot(2,1,2), plot(f*g)

>> wip(f,g) % demonstrate orthogonality of f and g

ans =

-1.1471e-18
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Figure 18.3: Creation (f, top left and g, top right) and multiplication of two (orthogonal) scalarfield
objects f and g.
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18.7.5 Computational example: using the linearoperator class

To demonstrate some basic properties and operations of the linearoperator class by continuing the previous
computational example; we know that with f = cos 2πx

d

dx
cos 2πx = 2π sin 2πx

and so

>> Dx = linearoperator(X,’d’,’x’);

>> df = Dx*f;

>> subplot(2,2,1), plot(df)

>> ddf = Dx*df/(-4*pi^2); % will return original f = cos(2*pi*x)

>> subplot(2,2,2), plot(ddf)

>> dfg = Dx*(f*g);

>> subplot(2,1,2), plot(dfg)
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Figure 18.4: 2π sin 2πx computed by differentiating f with respect to x (top left); the original f returned
by twice differentiation with respect to x (top right) and multiplication of two (orthogonal) scalarfield
objects followed by differentiation with respect to x (bottom).



Chapter 19

Case Study: Tubular reactor
boundary-value problem

Consider a system where a reacting species travels down a long tube (of length L m), transported by
a combination of diffusion and convection due to the bulk fluid velocity v (in m/sec). Assuming the
reactant concentration C (in moles/m3) is a function of only the axial position and time, we can write
the reactant material balance over a differential element as

A(J|z − J|z+∆z ) = A∆zRc

with the reactant flux J (in mole/m2 sec) written as

J = −D
dC

dz
+ vC

and the reactant consumption rate per unit volume (moles/(sec m3)) term as proportional only to reactant
concentration

Rc = kcC .

This model is based on the assumptions of a homogeneous, first-order, isothermal reaction (the rate
constant kc has units sec−1. By taking ∆z → 0 and combining terms, we find

0 =
d

dz
(−J)− kcC

= D
d2C

dz2
− v

dC

dz
− kcC

The boundary conditions for both ends of the reactor are derived from the continuity of reactant flux
across the boundaries. At the reactor inlet z = 0, the total flux must equal the reactant feed rate, so

vCin = J|z=0

vCin = −D
dC

dz

∣∣∣
z=0

+ vC |z=0

so

−D
dC

dz
= v(Cin − C ) at z = 0.
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Defining the flux as constant at the reactor outlet,

D
dC

dz

∣∣∣
z=L−ε

+ vC |z=L−ε = D
dC

dz

∣∣∣
z=L+ε

+ vC |z=L+ε

Without any other information on reactant transport beyond the reactor exit, it is impossible to simplify
this equation. Under the assumption that there are no concentration gradients for z > 1,

dC

dz
= 0 at z = 1

because physically unrealistic concentration differences result when the derivative is not zero.

The modeling equations can be put in dimensionless form with the following definitions

ξ =
z

L
x =

C

Cin
Pe =

Lv

D
K =

kcL

v

to find the homogeneous ODE model

0 =
1

Pe

d2x

dξ2
− dx

dξ
− Kx

subject to the nonhomogeneous boundary conditions

1

Pe

dx

dξ
= x − 1 at ξ = 0

dx

dξ
= 0 ξ = 1

If we split the second-order differential equation into the following two first-order ODEs

dx

dξ
= y

dy

dξ
= Pe (y + Kx)

we can write the problem in matrix notation

d

dξ

[
x
y

]
=

[
0 1

KPe Pe

] [
x
y

]
subject to boundary conditions

y = Pe(x − 1) at ξ = 0

y = 0 ξ = 1

19.1 Exact solution

Choosing representative parameter values Pe = 4 and K = 5/4 gives the homogeneous set of ordinary
differential equations

d

dξ

[
x
y

]
=

[
0 1
5 4

] [
x
y

]
= A

[
x
y

]
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subject to boundary conditions

y = 4(x − 1) at ξ = 0 and y = 0 at ξ = 1. (19.1)

The eigenvalues of coefficient matrix A can be computed to find λ1,2 = 5,−1 along with their associated
eigenvectors

u1 =

[
1
5

]
u2 =

[
1
−1

]
.

This means the general solution takes the form[
x
y

]
= q1e5ξ

[
1
5

]
+ q2e−1ξ

[
1
−1

]
.

To determine q, we solve for the coefficients using the boundary conditions. At ξ = 0 and using (19.1)
we find 5q1 − q2 = 4q1 + 4q2 − 4 and at ξ = 1 we find 5q1e5 − q2e−1 = 0; putting this in matrix form[

1 −5
5e5 −e−1

] [
q1

q2

]
=

[
−4
0

]
.

It is interesting to solve this system by hand using Gaussian Elimination because it shows the importance
of pivoting. Using the partial pivoting rule and exchanging the two rows, performing the single elimination
step, and neglecting small terms gives[

5e5 −e−1

0 −5

] [
q1

q2

]
=

[
0
−4

]
.

which gives

q2 =
4

5
q1 =

4

25
e−6

from back-substitution. We now compare this solution to that which is obtained without the pivoting
operation; carrying out the elimination procedure and neglecting relatively small terms gives[

1 −5
0 25e5

] [
q1

q2

]
=

[
−4

20e5

]
.

which gives

q2 =
4

5
q1 = 0.

While this solution is numerically close to the solution obtained with pivoting, they are qualitatively
different in that the second does not satisfy the outlet boundary condition.

We now write the exact solution[
x
y

]
=

4e−6

25
e5ξ

[
1
5

]
+

4

5
e−1ξ

[
1
−1

]
.

The solution is plotted in Fig. 19.1.
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19.1.1 BVP collocation solution

We compute the solution to the hot-wall reactor problem using a M = 6 point collocation method
resulting in M linear discretized equations. The computed solution at the collocation points is compared
to the exact solution in Fig. 19.1

M = 6; Pe = 4; K = 5/4;

Z = quadgrid(’slab’,M,’z’,[0 1]); % quadgrid object

Zf = quadgrid(’slab’,4*M,’z’,[0 1]); % finer grid for exact solution

[z, A, B] = colmat(Z); % extract collocation array info

C = zeros(M);

b = zeros(M,1);

C(1,:) = A(1,:)/Pe; % inlet boundary condition

C(1,1) = C(1,1) - 1;

b(1,1) = -1;

C(2:M-1,:) = B(2:M-1,:)/Pe - A(2:M-1,:); % interior points

C(2:M-1,2:M-1) = C(2:M-1,2:M-1) - K*eye(M-2);

C(M,:) = A(M,:); % outlet boundary condition

x = C\b; % compute mole fraction at collocation points

Zfsf = qg2sf(Zf);

% exact solution

xExact = 4*exp(-6)*exp(5*Zfsf)/25 + 4*exp(-Zfsf)/5;
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Figure 19.1: Exact solution (blue curve) compared to the M-point collocation solution; the latter is
represented by the red circles.
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19.1.2 Collocation solution error analysis

Finally, we can take a closer look at the errors generated by the collocation discretization procedure. As
seen in Fig. 19.2, we re-plot the collocation and exact solutions in the uppermost plots. We can translate
the collocation solution defined at the collocation points into a scalarfield object and then compute
the residual at both the collocation points and in between by

xcolsf = scalarfield(Z,x);

residual = (1/Pe)*laplacian(xcolsf) - gradient(xcolsf) - K*x;

The significance of this operation is that because the scalarfield object represents the function value
between the collocation points by the (unique) interpolating polynomial, we can observe that the poly-
nomial representation of the residual between the collocation points is indeed non-zero, while it is zero at
the interior collocation points (Fig. 19.2, center). Because the residual is computed with the differential
equation, we should not expect it to vanish at the endpoints. Furthermore, direct comparison of the
collocation solution to the exact solution reveals it is non-zero a the collocations points. This can be
attributed to the polynomial representation of the collocation solution, compared to the exponential form
of the true solution.
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Figure 19.2: Exact solution (blue curve) compared to the M-point collocation solution(top); the latter
is represented by the red circles. The residual of the function demonstrating the error inside Ω (middle).
Note how the residual function is zero at the interior collocation points (marked in red), but is not at the
endpoints. Difference between exact and collocation solution over the entire physical domain (bottom).



Chapter 20

Case Study: One-dimensional
transient heat transfer

Consider a material sandwiched between two rigid plates with temperatures TA and TB (as shown in
Fig. 20.1).

T
A

T
B

z=0 z=L

T(z,t<0)

T(z,t>=0)

T
A

z=0

T1 T2 T3 TN-1 TN T
B

z=L

!z

!y

!x

T
A

T
B

z=0 z=L

T(z,t<0)

T(z,t>=0)

T
A

z=0

T1 T2 T3 TN-1 TN T
B

z=L

!z

!y

!x

Figure 20.1: Temperature profiles in a slab of material between plates of two different temperatures (TA

and Tb) at t < 0 and t ≥ 0 (left); finite volume discretization of the temperature profile (right).

Initially, the fluid is at a constant temperature T (z , t < 0) = TA, but precisely at t = 0, the temperature
of wall B is raised to TB(t ≥ 0) > TA. Intuition tells us that the temperature profile T (z , t) appears as
the sample profile depicted in Fig. 20.1 for t ≥ 0.

Our goal is to compute T (z , t) for t ≥ 0, including the steady state corresponding to t →∞. We begin
development of the solution procedure by breaking the fluid up into N equal volumes (see Fig. 20.1,
right) where

∆x = ∆y = ∆z =
L

N
.

Therefore the volume of each element is simply ∆x∆y∆z . Given the heat capacity of the material
between the walls (Cp with units J/kg/K ), its density (ρ with units kg/m3), and assuming that each is
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independent of temperature, we can write an energy balance for each element as

Cpρ∆x∆y∆z
dTn

dt
= ∆x∆y (Qn−1 + Qn) (20.1)

ignoring the elements corresponding to T1 and TN for now, and where Qn−1 and Qn correspond to the
net thermal energy flux to element n from its neighbors to the left and right, respectively.

If k is the thermal conductivity of the material (with units J/m/s/K ), we can approximate Fourier’s law
of heat conduction by

Qn−1 = k
Tn−1 − Tn

∆z
Qn = k

Tn+1 − Tn

∆z
(20.2)

20.1 Numerical solution

1. Start by taking the limit of ∆z → 0 (and recalling your very first calculus class) of (20.1), resulting
in the energy flux at each boundary of the element n:

Qn−1 = −k
dT

dz

∣∣∣∣
z+(n−1)∆z

Qn = k
dT

dz

∣∣∣∣
z+n∆z

(20.3)

Substituting (20.3) into (20.1) and again taking the limit of ∆z → 0 results in the partial differential
equation and corresponding boundary and initial conditions:

∂T

∂T
=
∂2T

∂z2
subject to T (0) = TA, T (L) = TB , T (z , 0) = TA, 0 < z < L (20.4)

2. Given the boundary condition values TA = 10oC and TB = 90oC , compute the exact steady-state
solution to the PDE derived in the previous question.

We integrate the steady state version of (20.4) twice to find

T (z) = az + b

where the constants of integration are determined from the boundary conditions resulting in

T (z) = 80z/L + 10.

3. Our system is such that the values of Cp, ρ, and k result in

k

ρCp
= 1

m2

s
(20.5)

(nothing is lost in this assumption concerning the validity of our solution). With N = 3, write out
the equations

dTn

dt
= ... n = 1, 2, 3

in their simplest possible form.

4. Write the three equations above in the following form

d

dt

 T1

T2

T3

 =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 T1

T2

T3

−
 b1

b2

b3


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5. Create a MATLAB function of the form

[A,b] = makecoeff(N,Tleft,Tright)

That creates the A and b arrays given the number of elements N and the boundary temperature
values. Report the results for N = 3.

6. Using the A and b arrays generated by the function above, numerically compute the steady state
solutions for N = 3 and N = 20; compare your results to the exact solution by plotting the three
on a single graph.

7. Write a MATLAB script that does the following

saveig = zeros(30);

for N = 1:30

A = makecoeff(N,TA,TB);

% now compute the eigenvalues of A

% now sort them from smallest to largest

% save the sorted eigenvalues in the saveig array

end

Now, plot the saved eigenvalues as a function of N; what values do the eigenvalues converge to?
Does the system appear to be stable or unstable?

8. For N = 30, plot the eigenvectors (versus z) associated with the three smallest magnitude eigen-
values. What functions do the results look like?

9. Using lodesolver.m, compute a solution for N = 20 and plot the temperature profiles as a
function of z for t = 0, 0.1, 0.5, 1, 10s What is your impression of the time scale(s) of this system?

20.2 Transport in more complicated geometries

Now consider the system shown in Fig. 20.2.

If (20.5) holds and ∆x = ∆y = ∆z = 1m

1. Write out the equations
dTn

dt
= ... n = 1, 2, ... , 10

in their simplest possible form.

2. Given the initial condition

Tn(t = 0) = 0 n = 1, 3, 4, ... , 10

T2(t = 0) = 1

compute solutions for 0 ≤ t ≤ 5s; plot and describe the results.
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Figure 20.2: Finite volume discretization of a geometrically more complicated system.
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